
 Advanced search

Linux Journal Issue #107/March 2003

Features

eVote Adds Elections to Mailing Lists by Marilyn Davis
Now mailing-list members can conduct an election on the list—
no administrator help needed.

An Introduction to the Spambayes Project by Richie Hindle
Make advanced spam filtering work with your existing mail tools.

A Statistical Approach to the Spam Problem by Gary Robinson
Can mathematics tell spam apart from legitimate mail? Find out
which approaches work best in real-world tests.

Building with Blogs by Doc Searls and David Sifry
Is it a diary? A links page? Or more? The king of blogs and the
author of new blog-ranking software outline your choices.

Indepth

Getting Started with Emacs by Charles Curley
After you've mastered the Emacs tutorial, now what? A look at
macros for mail and more.

Embedded

Linux Signals for the Application Programmer by Dr. B. Thangaraju
Here's how to use signals in your applications.

Toolbox

Kernel Korner Using the Input Subsystem, Part II by Brad Hards

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6466.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6467.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6497.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6242.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6483.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429.html

At the Forge Unicode by Reuven M. Lerner
Cooking with Linux Chatting Up the Chef by Marcel Gagné
Paranoid Penguin rsync, Part I by Mick Bauer

Columns

Linux for Suits Original and Ultimate Communities by Doc Searls
EOF Broadcast Flag: MPAA's Latest Attack on Linux by Seth David
Schoen

Reviews

BlueCat Networks' Meridius Mail Relay by Nathan Smith
Mathematica 4.2 by Dragan Stancevic

Departments

Letters
upFRONT
From the Editor
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6504.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6489.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6475.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6496.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6503.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6348.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6386.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6470.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6537.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6522.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6523.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6524.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

eVote Adds Elections to Mailing Lists

Marilyn Davis

Issue #107, March 2003

Mailing lists are great for discussion, and now you can take a vote with your
mailing list too.

A specialized database server for keeping votes, combined with a conferencing
system, can create a medium for a true nonhierarchical democracy (see the
Ideal Democracy Sidebar). The work of administering the voting system would
be shared by the users and the software, not the system administrator. When
the correct architecture for the problem came to me, I could no longer simply
advocate Electronic Democracy; I built it.

Ideal Democracy Includes Both Discussion and Voting

The specialized vote server, the Clerk, is written in C++ and provides many
features for voters. Anyone can initiate a poll, and users can change their votes
as long as the poll is open. Polls also can be public, allowing all the participants
to view each other's votes, private, or if_voted, allowing us to know who voted
but not how they voted. Several poll types are supported: yes/no, numeric and
grouped. The software is easily enhanced to add new features and poll types by
extending the existing classes. The Clerk maintains data on the fly, requiring no
help from the administrator. True to the promise of object-oriented
architecture, the addition of each new feature has made the code more robust.

The Ballots

The ballots are dynamic. When the user closes her poll and then drops it from
the conference, and when the software is otherwise idle, the ballots are
collapsed, rolling the storage bytes for other items toward the top and making
space for new polls. The item objects recalculate their new places in the ballots,
and everything is set to continue without any intervention from the
administrator.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448s1.html

The Clerk's Communication with the Voter

The Clerk's main() function is an infinite loop that watches for incoming
messages on the interprocess communication messaging facility from eVote
clients, i.e., user-interface processes with live voting users. The Clerk has one
permanent message queue for incoming requests from users, and it is
managed by the single instance of the InQ class. Each eVote process has a
temporary message queue of its own for receiving messages from the Clerk.
These are instantiations of the OutQ class.

Shared Memory

Although the statistics about polls and the personal information requested by a
voter are communicated via the OutQ objects, another interprocess
communication facility, shared memory, is used for slow-moving data. The list
of poll items and their properties are stored in shared memory so that all the
eVote clients currently active in the same conference can see them. Properties
of the poll items may include public, private or if_voted, where users can see if
another voter has voted, but not how he voted; yes/no or numeric; visible or
hidden, where the statistics are available only after the poll is closed; single or
grouped; and the title.

The conference's ItemList object is responsible for maintaining the shared
memory. When a new poll is created for a conference, if the growing list of poll
items requires a new patch of shared memory, a message is sent to all active
eVote clients. This dynamic notification feature enables the voters to conduct
their meeting in real time.

Data Files

The Clerk keeps three data files for each conference or e-mail list and one
overall data file that lists all the e-mail addresses and a corresponding
numerical ID. For the sample e-mail list, a sample.dat with the current ballots,
keyed by the voter's numerical ID, is kept by the BallotBox object. The BallotBox
also keeps sample.bnf, which contains a hash into sample.dat and some handy
statistics. A sample.inf file storing the current map of items onto the ballots is
maintained by the ItemList object.

eVote, the user interface, keeps a petition's signatures and comments in a flat
file, one file per petition.

User Interfaces

At this time, the Clerk has two user interfaces and invites more. The Clerk's first
user interface is a simple text-based Telnet interface, designed with
conferencing systems and BBSes in mind.

The explosion of the Internet dampened enthusiasm for conferencing systems.
E-mail arose as the dominant form of communication, and e-mail lists became
the community discussion medium. So the e-mail user interface was built to
allow e-mail communities to make formal decisions, while still using the
popular Mailman mailing-list software.

The E-mail Interface

eVote's e-mail list interface provides three levels of participation:

1. Voter: users can vote and change their votes; they also have the same
power to query the data, as does the administrator of the poll and the
list's owner.

2. User/administrator: any user can initiate a poll. Under ordinary
circumstances, only the user who starts a poll can close or drop it from
the data.

3. List owner: some commands are password-protected. These provide
overriding powers so the owner can close/drop any poll, change the
voting privileges or move a participant's ballot to a new e-mail address.
The list's owner also retains the same responsibilities and powers as
owners of lists without eVote.

Five Executables

The overall architecture of the e-mail facility is shown in Figure 1. eVote is five
programs that work together: eVote_Clerk, the Clerk; eVote_insert, the e-mail
list user interface; eVote_mail, the mail administrator's utility interface;
eVote_petition, the interface for signers of petitions; and eVote, the command
center for controlling the Clerk.

Figure 1. eVote's Mail Interface

eVote_Clerk runs continuously in the computer's background, establishing new
polls, dropping old items, accepting, tallying, storing and reporting votes and
statistics. eVote_Clerk has no direct user interface. It is started, controlled and
stopped by the eVote executable.

Many Possibilities: eVote's Poll Types

The eVote_insert executable is the e-mail interface that coordinates with
Mailman, the popular open-source e-mail list server. Mailman provides the
discussion medium; eVote provides the voting facility. This cooperation is
configured in the alias file of the mail transfer agent (MTA). Exception: if the
MTA is Exim and the listserver is Mailman, Exim's configuration file handles lists
and the cooperation with eVote.

eVote_mail allows the site administrator to synchronize the Clerk's list of
subscribers to Mailman's list. The site administrator can use this program to
block voting from a specific address or to drop an address from all lists.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6448s2.html

Similarly, this program can delete stale messages that have been awaiting
confirmation.

Two facilities are present in eVote's e-mail interface: polling in e-mail lists and
petition support. The petition facility allows anyone to participate, while the e-
mail list facility allows only addresses on the e-mail list to participate. Petitions
are administered collaboratively by members of a petition list, which is any list
whose name starts with the word petition, say, petitiona, petitionb and so on.
Polls initiated in petition lists have the option of being open to nonmembers.

The eVote executable is the command center for eVote and can be called with
various arguments. Depending on the argument, eVote will start, stop or check
the Clerk, check and synchronize data, or flush or restart the log.

How eVote/Clerk Integrates with Mailman

Mailman can be invoked by any MTA such as sendmail, Exim or Postfix.
Normally, mail directed to the e-mail list address is piped to Mailman's wrapper
program to control permissions on the process and to limit the programs
executed through the pipe. The wrapper then calls Mailman's post script to
broadcast the mail to the list's addresses.

The alias entry for the regular Mailman list called sample might look like:

sample: "|/home/mailman/bin/wrapper post
sample"
sample-admin: "|/home/mailman/bin/wrapper mailowner
sample"
sample-request: "|/home/mailman/bin/wrapper mailcmd
sample"
sample-owner: sample-admin

The mailcmd program needs a few new lines of code to tell it to send e-mail
notification to eVote whenever someone successfully subscribes or
unsubscribes from the list.

Mail to be broadcast to list members is piped to Mailman's post program by the
sample: alias.

Figure 2. Mailman without eVote

eVoting is turned on by inserting eVote_insert in the pipe:

https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f2.large.jpg

sample: "|/home/mailman/bin/wrapper
eVote_insert post sample"

Wrapper's C source code gets a few modifications so it will allow eVote_insert to
be run. Now eVote gets a first look at all the mail coming into the list's
broadcasting address. If the first word in the incoming message is eVote,
eVote_insert intercepts the message for vote processing. Otherwise, it sends
the message on to post (Figure 3).

Figure 3. eVote Checks Mail

Petition lists are set up exactly as other eVote lists. As previously mentioned,
eVote recognizes them as special because their names start with “petition”.
These are intended to be used for collaborating on the administration of a
petition. Members of a petition list can discuss and poll themselves, and they
also have the power to set up a petition for the whole world to sign. These
petitions can include any of eVote's vote types, and they always invite a
comment from the signers.

The petition facility has an additional alias for receiving signatures:

eVote: "|/home/mailman/mail/wrapper eVote_petition"

Figure 4. Petition Facility

The one eVote_petition alias processes signatures for all petition lists at the
facility.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6448f4.large.jpg

Two Enhancements for Elections

As it is, the eVote/Clerk system is not designed for and is not suitable for
presidential elections. With two major enhancements, however, it could be the
most secure and accurate solution. The required enhancements are:

1. A networking layer so networked Clerks manage the distributed data. The
network would also facilitate a check on other Clerks' data and
calculations. For example, if a voter votes with one Clerk and is sent a
receipt from that Clerk, and later, a second receipt is sent to the voter
from a different, randomly chosen Clerk, this process would ensure the
integrity of all the Clerks.

2. A secure encryption layer so only the software and the voter can see that
voter's ballot.

With these enhancements, the Clerk could provide more security than
generalized database servers because Clerks can redundantly and
geographically distribute the votes to many small computers running a GNU
system. In addition, the individual administrators have minimal responsibility
and minimal power, and each administrator is watched by the network of
Clerks. Finally, the Clerk involves voters in facilitating not only recounts and
redundant checks but revotes as well. With a system such as this one, we can
go confidently into our electro-democratic age.

Marilyn Davis (marilyn@deliberate.com) earned her
PhD in Theoretical Radio Astronomy in the ancient
past. Now she waits tables and teaches Python, C and
the GNU development tools at UCSC Extension in
Sunnyvale, California.

email: marilyn@deliberate.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:marilyn@deliberate.com
mailto:marilyn@deliberate.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

An Introduction to the Spambayes Project

Richie Hindle

Issue #107, March 2003

A trainable system that works with your current e-mail system to catch and
filter junk mail.

The Spambayes Project is one of many projects inspired by Paul Graham's “A
Plan for Spam” (www.paulgraham.com/spam.html). This famous article talks
about using a statistical technique called Bayesian Analysis to identify whether
an e-mail message is spam. For the full story of how the mathematics behind
Spambayes works and how it has evolved, see Gary Robinson's accompanying
article on page 58.

In a nutshell, the system is trained by a set of known spam messages and set of
known non-spam, or “ham”, messages. It breaks the messages into tokens
(words, loosely speaking) and gives each token a score according to how
frequently it appears in each type of message. These scores are stored in a
database. A new message is tokenized and the tokens are compared with those
in the score database in order to classify the message. The tokens together give
an overall score—a probability that the message is spam.

The fact that you train Spambayes by using your own messages is one of its
strengths. It learns about the kinds of messages, both ham and spam, that you
receive. Other spam-filtering tools that use blacklists, generic spam-
identification rules or databases of known spams don't have this advantage.

The Spambayes software classifies e-mail by adding an X-Spambayes-
Classification header to each message. This header has a value of spam, ham or
unsure. You then use your existing e-mail software to filter based on the value
of that header. We use a scale of spamminess going from 0 (ham) to 1 (spam).
By default, < 0.2 means ham and > 0.9 means spam. Any e-mail between those
figures is marked as unsure. You can tune these thresholds yourself; see below
for information on how to configure the software.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.paulgraham.com/spam.html

Why Spambayes Is Different

Spambayes is different from other spam classifiers in three ways: its test-based
design philosophy, its tokenizer and its classifier.

We can all think of obvious ways to identify spam: it has SHOUTING subject
lines; it tells you how to Make Money Fast!!!; it purports to be from the vice
president of Nigeria or his wife. It's tempting to tune any spam-classification
software according to obvious rules. For instance, it should obviously be case-
sensitive, because FREE is a much better spam clue than free. But the
Spambayes team refused from the outset to take anything at face value. One of
the earliest components of the software was a solid testing framework, which
would compare new ideas against the previous version. Any idea that didn't
improve the results was ditched. The results were often surprising; for instance,
case sensitivity made no significant difference. This prove-it-or-lose-it approach
has helped develop an incredibly accurate system, with little wasted effort.

The tokenizer does the job of splitting messages into tokens. It has evolved
from simple split-on-whitespace into something that knows about the structure
of messages, for instance, tagging words in the Subject line so that they are
separately identified from words in the body. It also knows about their content,
for instance, tokenizing embedded URLs differently from plain text. All the
special rules in the tokenizer have been rigorously tested and proven to
improve accuracy. This includes deliberately hiding certain tokens—for
example, we strip HTML decorations and ignore most headers by default.
Surprising decisions, but they're backed up by testing.

The classifier is the statistical core of Spambayes, the number cruncher. This
has evolved a great deal since its beginnings in Paul Graham's article, again
through test-based development. Gary's article, “A Statistical Approach to the
Spam Problem” (page 58), covers the classifier in detail.

Requirements and Installation

The Spambayes software is available for download from sf.net/projects/
spambayes. It requires Python 2.2 or above and version 2.4.3 or above of the
Python e-mail package. If you're running Python 2.2.2 or above, you should
already have this. If not, you can download it from mimelib.sf.net and install it:
unpack the archive, cd to the email-2.4.3 directory and type setup.py install.
This will install it in your Python site-packages directory. You'll also need to
move aside the standard e-mail library; go to your Python Lib directory, and
rename the file email as email_old.

http://sf.net/projects/spambayes
http://sf.net/projects/spambayes
http://mimelib.sf.net

Keeping up to Date

Because the project is in constant development, things are sure to change
between my writing this article and the magazine hitting the newsstand. I'll
publish a summary of any major changes on an Update page at
www.entrian.com/spambayes.

Some of the things we're working on as I write this article include more flexible
command-line training; enabling integration with more e-mail clients, such as
Mutt; web-based configuration; security features for the web interface; and
easier installation. I'll provide full details of these items on the Update page.

Components

Three classifier programs are in the Spambayes software: a procmail filter, a
POP3 proxy and a plugin for Microsoft Outlook 2000. I cover the procmail filter
and the POP3 proxy in this article. A web interface (covered below) and various
command-line utilities, test harnesses and so on are also part of Spambayes;
see the documentation that comes with the software for full details.

Procmail-Based Setup

If you use a procmail-based e-mail system, this is how the Spambayes procmail
system works:

• All your existing mail has a new X-Spambayes-Trained header. The
software uses this to keep track of which messages it has already learned
about.

• The software looks at all your incoming mail. Messages it thinks are spam
are put in a “spam” mail folder. Everything else is delivered normally.

• Every morning, it goes through your mail folders and trains itself on any
new messages. It also picks up mail that's been refiled—something it
thought was ham but was actually spam and vice versa. Be sure to keep
spam in your spam folder for at least a day or two before deleting it. We
suggest keeping a few hundred messages, in case you need to retrain the
software.

You'll need a working crond to set up the daily training job. Optionally, you can
have a mailbox of spam and a mailbox of ham to do some initial training.

To set up Spambayes on your procmail system, begin by installing the software.
I'll assume you've put it in $HOME/src/spambayes. Then, create a new
database:

$HOME/src/spambayes/hammiefilter.py -n

http://www.entrian.com/spambayes

If you exercise the option to train Spambayes on your existing mail, type:

$HOME/src/spambayes/mboxtrain.py \
-d $HOME/.hammiedb -g $HOME/Mail/inbox \
-s $HOME/Mail/spam

You can add additional folder names if you like, using -g for good mail folders
and -s for spam folders. Next, you need to add the following two recipes to the
top of your .procmailrc file:

:0fw
| $HOME/src/spambayes/hammiefilter.py
:0
* ^X-Spambayes-Classification: spam
$HOME/Maildir/.spam/

The previous recipe is for the Maildir message format. If you need mbox (the
default on many systems) or MH, the second recipe should look something like
this:

:0:
* ^X-Spambayes-Classification: spam
$HOME/Mail/spam

If you're not sure what format you should use, ask your system administrator. If
you are the system administrator, check the documentation of your mail
program. Most modern mail programs can handle both Maildir and mbox.

Using crontab -e, add the following cron job to train Spambayes on new or
refiled messages every morning at 2:21 AM:

21 2 * * * $HOME/src/spambayes/mboxtrain.py -d
$HOME/.hammiedb -g $HOME/Mail/inbox
-s $HOME/Mail/spam

You also can add additional folder names here. It's important to do this if you
regularly file mail in different folders; otherwise Spambayes never learns
anything about those messages.

Spambayes should now be filtering all your mail and training itself on your
mailboxes. But occasionally a message is misfiled. Simply move that message
to the correct folder, and Spambayes learns from its mistake the next morning.

Many thanks to Neale Pickett for the information in this section.

Setting Up the POP3 Proxy and the Web Interface

If you don't use Procmail or don't want to mess with it, or if you want to set up
the software on a non-UNIX machine, you can use the POP3 proxy. This is a
middleman that sits between your POP3 server and your e-mail program, and it
adds an X-Spambayes-Classification header to e-mails as you retrieve them.

You also can use the POP3 proxy with Fetchmail; simply reconfigure Fetchmail
to talk to the POP proxy rather than your real POP3 server.

The web interface lets you pretrain the system, classify messages and train on
messages received via the POP3 proxy, all through your web browser. The
software is configured through a file called bayescustomize.ini. This is true of
the Procmail filter as well. There's no need to change any of the defaults to use
it out-of-the-box, but the POP3 proxy needs to be set up with the details of your
POP3 server. All the available options and their defaults live in a file called
Options.py, but you need to look at that only if you're terminally curious or
want to do advanced tuning. The minimum you need to do is create a
bayescustomize.ini file like this:

[pop3proxy]
pop3proxy_servers: pop3.example.com

where pop3.example.com is wherever you currently have your e-mail client
configured to collect mail. The proxy runs on port 110 by default. This is fine on
non-UNIX platforms, but on UNIX you'll want to use a different one by adding
this line:

pop3proxy_ports: 1110

to the [pop3proxy] section of bayescustomize.ini. If you collect mail from more
than one POP3 server, you can provide a list of comma-separated addresses in
pop3proxy_servers and a corresponding list of comma-separated port numbers
in pop3proxy_ports. Each port proxies to the corresponding POP3 server.

You can now run pop3proxy.py. This prints some status messages, which
should include something like:

Listener on port 1110 is
 proxying pop3.example.com:110
User interface url is http://localhost:8880

This means the proxy is ready for your e-mail client to connect to it on port
1110, and the web interface is ready for you to point your browser at the given
URL. To access the web interface from a different machine, replace localhost
with the name of the machine running pop3proxy.py.

Classifying Your E-mail Using the POP3 Proxy

You now need to configure your e-mail client to collect mail from the proxy
rather than from your POP3 server. Where you currently have
pop3.example.com, port 110, set up as your POP3 server, you need to set it to
localhost, port 1110. If you're running the proxy on a different machine from
your e-mail client, use machinename, port 1110.

Classifying your mail is now as easy as clicking “Get new mail”. The proxy adds
an X-Spambayes-Classification header to each message, and you can set up a
filter in your mail program to file away suspected spam in its own folder. Until
you do some training, however, all your messages are classified as unsure.

Once you're up and running, you should check your suspected spam folder
periodically to see whether any real messages slip through, so-called false
positives. As you train the system, this will happen less and less often.

Training through the Web Interface

Initial training isn't an absolute requirement, but you'll get better results from
the outset if you do it. You can use the upload a message or mbox file form to
train via the web interface, either on individual messages or UNIX mbox files.

Once you're up and running, you can use the web interface to train the system
on the messages the POP3 proxy has seen. The Review messages page lists
your messages, classified according to whether the software thought they were
spam, ham or unsure. You can correct any mistakes by checking the boxes and
then clicking Train. After a couple of days (depending on how much e-mail you
get), there'll be very few mistakes.

Figure 1. Spambayes Proxy Web Training Page

https://secure2.linuxjournal.com/ljarchive/LJ/107/6466f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6466f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6466f1.large.jpg

Training Tips

Spambayes does an excellent job of classifying your mail, but it's only as good
as the data on which you train it. Here are some tips to help you get the best
results:

• Don't train on old mail. The characteristics of your e-mail change over
time—sometimes subtly, sometimes dramatically—so it's best to use
recent mail.

• Take care when training. If you mistakenly train a spam message as ham,
or vice versa, it will throw off the classifier.

• Try to train on roughly as much spam as ham. This isn't critical, but you'll
get better results with a fair balance.

Possible Future Directions

The Spambayes software is in constant development. Many people are
involved, and we have many ideas about what to do next. Here's a taste of
where the project might go:

• Improving the tokenizer and classifier as new research reveals more
accurate ways to classify spam.

• Intelligent autotraining: once the system is up and running, it should be
possible for it to keep itself up-to-date by training itself, with users
correcting only the odd mistake. We're already doing something along
these lines with the Procmail system, but we're looking at ways of making
it more automated and compatible with all platforms.

• SMTP proxy: to train the system from any e-mail client on any platform,
you could send a message to a special ham or spam address. This could
be a simple way to correct classification mistakes, and it would combine
well with intelligent auto-training techniques.

• Database reduction: the more you train the system, the larger its
database gets. We're looking at ways to keep the database size down.

• Integration with spam-reporting tools: the web interface and the e-mail
plugins could let you report spams to systems like Vipul's Razor and Pyzor.

• More e-mail client integration: we already have the Outlook plugin, and
we'd like to integrate with more e-mail clients. The POP3 proxy and the
web interface work well with any e-mail client, but having a Delete as
Spam button right there in your e-mail client is much more convenient
than switching to your web browser.

• Better documentation: we aim to publish documentation on how to set up
Spambayes on all the popular platforms and e-mail clients.

By the time this article is in print, some of these things already may be
happening; see my Update page at www.entrian.com/spambayes for details.

email: richie@entrian.com

Richie Hindle is a professional software engineer in the UK. He works full-time
writing business intelligence software, and in his spare time he works on
Spambayes and his own Python projects at www.entrian.com. He only
occasionally wears a silly hat.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.entrian.com/spambayes
mailto:richie@entrian.com
http://www.entrian.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Statistical Approach to the Spam Problem

Gary Robinson

Issue #107, March 2003

Using Bayesian statistics to detect an e-mail's spamminess.

Most people are spending significant time daily on the task of distinguishing
spam from useful e-mail. I don't think I'm alone in feeling that we have better
things to do. Spam-filtering software can help.

This article discusses one of many possible mathematical foundations for a key
aspect of spam filtering—generating an indicator of “spamminess” from a
collection of tokens representing the content of an e-mail.

The approach described here truly has been a distributed effort in the best
open-source tradition. Paul Graham, an author of books on Lisp, suggested an
approach to filtering spam in his on-line article, “A Plan for Spam”. I took his
approach for generating probabilities associated with words, altered it slightly
and proposed a Bayesian calculation for dealing with words that hadn't
appeared very often. Then I suggested an approach based on the chi-square
distribution for combining the individual word probabilities into a combined
probability (actually a pair of probabilities—see below) representing an e-mail.
Finally, Tim Peters of the Spambayes Project proposed a way of generating a
particularly useful spamminess indicator based on the combined probabilities.
All along the way the work was guided by ongoing testing of embodiments
written in Python by Tim Peters for Spambayes and in C by Greg Louis of the
Bogofilter Project. The testing was done by a number of people involved with
those projects.

Generating Word Probabilities

We will assume the existence of a body of e-mails (the corpus) for training,
together with software capable of parsing each e-mail into its constituent
words. We will further assume that each training e-mail has been classified
manually as either “ham” (the e-mail you want to read) or “spam” (the e-mail

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

you don't). We will use this data and software to train our system by generating
a probability for each word that represents its spamminess.

For each word that appears in the corpus, we calculate:

• b(w) = (the number of spam e-mails containing the word w) / (the total
number of spam e-mails).

• g(w) = (the number of ham e-mails containing the word w) / (the total
number of ham e-mails).

• p(w) = b(w) / (b(w) + g(w))

p(w) can be roughly interpreted as the probability that a randomly chosen e-
mail containing word w will be a spam. Spam-filtering programs can compute
p(w) for every word in an e-mail and use that information as the basis for
further calculations to determine whether the e-mail is ham or spam.

However, there is one notable wrinkle. In the real world, a particular person's
inbox may contain 10% spam or 90% spam. Obviously, this will have an impact
on the probability that, for that individual, an e-mail containing a given word
will be spam or ham.

That impact is ignored in the calculation above. Rather, that calculation, in
effect, approximates the probabilitily that a randomly chosen e-mail containing
w would be spam in a world where half the e-mails were spams and half were
hams. The merit of that approach is based on the assumption that we don't
want it to be harder or easier for an e-mail to be classified as spam just
because of the relative proportion of spams and hams we happen to receive.
Rather, we want e-mails to be judged purely based on their own characteristics.
In practice, this assumption has worked out quite well.

Dealing with Rare Words

There is a problem with probabilities calculated as above when words are very
rare. For instance, if a word appears in exactly one e-mail, and it is a spam, the
calculated p(w) is 1.0. But clearly it is not absolutely certain that all future e-mail
containing that word will be spam; in fact, we simply don't have enough data to
know the real probability.

Bayesian statistics gives us a powerful technique for dealing with such cases.
This branch of statistics is based on the idea that we are interested in a
person's degree of belief in a particular event; that is the Bayesian probability
of the event.

When exactly one e-mail contains a particular word and that e-mail is spam, our
degree of belief that the next time we see that word it will be in a spam is not
100%. That's because we also have our own background information that
guides us. We know from experience that virtually any word can appear in
either a spam or non-spam context, and that one or a handful of data points is
not enough to be completely certain we know the real probability. The Bayesian
approach lets us combine our general background information with the data
we have collected for a word in such a way that both aspects are given their
proper importance. In this way, we determine an appropriate degree of belief
about whether, when we see the word again, it will be in a spam.

We calculate this degree of belief, f(w), as follows:

Equation 1

where:

• s is the strength we want to give to our background information.

• x is our assumed probability, based on our general backround
information, that a word we don't have any other experience of will first
appear in a spam.

• n is the number of e-mails we have received that contain word w.

This gives us the convenient use of x to represent our assumed probability
from background information and s as the strength we will give that
assumption. In practice, the values for s and x are found through testing to
optimize performance. Reasonable starting points are 1 and .5 for s and x,
respectively.

We will use f(w) rather than p(w) in our calculations so that we are working with
reasonable probabilities rather than the unrealistically extreme values that can
often occur when we don't have enough data. This formula gives us a simple
way of handling the case of no data at all; in that case, f(w) is exactly our
assumed probability based on background information.

Those who are interested in the derivation of the above formula, read on;
others may want to skip down to the next section.

If you are already familiar with the principles of Bayesian statistics, you will
probably have no trouble understanding the derivation. Otherwise, I suggest
that you read sections 1 and 2 of David Heckerman's “A Tutorial on Learning
with Bayesian Networks” (see Resources) before continuing.

The formula above is based on assuming that spam/ham classification for e-
mails containing word w is a binomial random variable with a beta distribution
prior. We calculate the posterior expectation after incorporating the observed
data. We are going to do a test that is the equivalent of the “experiment” of
tossing a coin multiple times to see whether it appears to be biased. There are
n trials. If we were tossing a coin, each coin toss would be a trial, and we'd be
counting the number of heads. But in our case, the trial is looking at the next e-
mail in the training corpus that contains the word “porn” and seeing whether
the e-mail it contains is a spam. If it is, the experiment is considered to have
been successful. Clearly, it's a binomial experiment: there are two values, yes or
no. And they are independent: the fact that one e-mail contains “porn” isn't
correlated to the question of whether the next one will. Now, it happens that if
you have a binomial experiment and assume a beta distribution for the prior,
you can express the expectation that the nth + 1 trial will be successful as
shown in Equation 2.

Equation 2

• q is the number of successes.

• n is the number of trials.

• u and v are the parameters of the beta distribution.

We want to show that Equation 1 is equivalent to Equation 2. First perform the
following substitutions:

s = u + v s * x = u

The next step is to replace q with n * p(w). We have already discussed the fact
that p(w) is an approximation of the probability that a randomly chosen e-mail
containing w is spam in an imaginary world where there are the same number
of spams as hams. So n * p(w) approximates the count of spams containing w
in that world. This approximates the count of successes in our experiment and
is therefore the equivalent of q. This completes our demonstration of the
equivalence of Equations 1 and 2.

In testing, replacing p(w) with f(w) in all calculations where p(w) would
otherwise be used, has uniformly resulted in more reliable spam/ham
classification.

Combining the Probabilities

At this point, we can compute a probability, f(w), for each word that may appear
in a new e-mail. This probability reflects our degree of belief, based on our
background knowledge and on data in our training corpus, that an e-mail
chosen randomly from those that contain w will be a spam.

So each e-mail is represented by a set of of probabilities. We want to combine
these individual probabilities into an overall combined indicator of spamminess
or hamminess for the e-mail as a whole.

In the field of statistics known as meta-analysis, probably the most common
way of combining probabilities is due to R. A. Fisher. If we have a set
probabilities, p1, p2, ..., pn, we can do the following. First, calculate -2ln p1 * p2
* ... * pn. Then, consider the result to have a chi-square distribution with 2n
degrees of freedom, and use a chi-square table to compute the probability of
getting a result as extreme, or more extreme, than the one calculated. This
“combined” probability meaningfully summarizes all the individual probabilities.

The initial set of probabilities are considered to be with respect to a null
hypothesis. For instance, if we make the null hypothesis assumption that a coin
is unbiased, and then flip it ten times and get ten heads in a row, there would
be a resultant probability of (1/2)10 = 1/1024. It would be an unlikely event with
respect to the null hypothesis, but of course, if the coin actually were to be
biased, it wouldn't necessarily be quite so unlikely to have an extreme
outcome. Therefore, we might reject the null hypothesis and instead choose to
accept the alternate hypothesis that the coin is biased.

We can use the same calculation to combine our f(w)s. The f(w)s are not real
physical probabilities. Rather, they can be thought of as our best guess about
those probabilities. But in traditional meta-anaytical uses of the Fisher
calculation they are not known to be the real probabilities either. Instead, they
are assumed to be, as part of the null hypothesis.

Let our null hypothesis be “The f(w)s are accurate, and the present e-mail is a
random collection of words, each independent of the others, such that the f(w)s
are not in a uniform distribution.” Now suppose we have a word, “Python”, for
which f(w) is .01. We believe it occurs in spams only 1% of the time. Then to the
extent that our belief is correct, an unlikely event occurred; one with a
probability of .01. Similarly, every word in the e-mail has a probability

associated with it. Very spammy words like porn might have probabilities of .99
or greater.

Then we use the Fisher calculation to compute an overall probability for the
whole set of words. If the e-mail is a ham, it is likely that it will have a number of
very low probabilities and relatively few very high probabilities to balance them,
with the result that the Fisher calculation will give a very low combined
probability. This will allow us to reject the null hypothesis and assume instead
the alternative hypothesis that the e-mail is a ham.

Let us call this combined probability H:

Equation 3

where C-1() is the inverse chi-square function, used to derive a p-value from a
chi-square-distributed random variable.

Of course, we know from the outset the null hypothesis is false. Virtually no e-
mail is actually a random collection of words unbiased with regard to
hamminess or spamminess; an e-mail usually has a telling number of words of
one type or the other. And certainly words are not independent. E-mails
containing “sex” are more likely to contain “porn”, and e-mails containing the
name of a friend who programs Python are more likely also to contain
“Python”. And, the f(w)s are not in a uniform distribution. But for purposes of
spam detection, those departures from reality usually work in our favor. They
cause the probabilities to have a nonrandom tendency to be either high or low
in a given e-mail, giving us a strong statistical basis to reject the null hypothesis
in favor of one alternative hypothesis or the other. Either the e-mail is a ham or
it is a spam.

So the null hypothesis is a kind of straw dog. We set it up only in order for it to
be knocked down in one direction or the other.

It may be worthwhile to mention here a key difference between this approach
and many other combining approaches that assume the probabilities are
independent. This difference applies, for example, to such approaches as the
“Bayesian chain rule” and “Naïve Bayesian classification”. Those approaches
have been tested in head-to-head combat against the approach described here
using large numbers of human-classified e-mails and didn't fare as well (i.e.,
didn't agree as consistently with human judgment).

The calculations for those approaches are technically invalid due to requiring
an independence of the data points that is not actually present. That problem
does not occur when using the Fisher technique because the validity of the
calculations doesn't depend on the data being independent. The Fisher
calculation is structured such that we are rejecting a null hypothesis that
includes independence in favor of one of the two alternative hypotheses that
are of interest to us. These alternative hypotheses each involve non-
independence, such as the correlation between “sex” and “porn”, as part of the
phenomenon that creates the extreme combined probabilities.

These combined probabilities are only probabilities under the assumption that
the null hypothesis—known to be almost certainly false—is true. In the real
world, the Fisher combined probability is not a probability at all, but rather an
abstract indicator of how much (or little) we should be inclined to accept the
null hypothesis. It is not meant to be a true probability when the null
hypothesis is false, so the fact that it isn't doesn't cause computational
problems for us. The naïve Bayesian classifier is known to be resistant to
distortions due to a lack of independence, but it doesn't avoid them entirely.

Whether these differing responses to a lack of independence in the data are
responsible for the superior performance of Fisher in spam/ham classification
testing to date is not known, but it is something to consider as one possible
factor.

The individual f(w)s are only approximations to real probabilities (i.e., when
there is very little data about a word, our best guess about its spam probability
as given by f(w) may not reflect its actual reality). But if you consider how f(w) is
calculated, you will see that this uncertainty diminishes asymptotically as f(w)
approaches 0 or 1, because such extreme values can be achieved only by words
that have occurred quite frequently in the training data and either almost
always appear in spams or almost always appear in hams. And, conveniently,
it's the numbers near 0 that have by far the greatest impact on the calculations.
To see this, consider the influence on the product .01 * .5 if the first term is
changed to .001, vs. the influence on the product .51 *.5 if the first term is
changed to .501, and recall that the Fisher technique is based on multiplying
the probabilities. So our null hypothesis is violated by the fact that the f(w)s are
not completely reliable, but in a way that matters vanishingly little for the words
of the most interest in the search for evidence of hamminess: the words with
f(w) near 0.

Alert readers will wonder at this point: “Okay, I understand that these Fisher
calculations seem to make sense for hammy words with correspondingly
near-0 probabilities, but what about spammy words with probabilities near 1?”
Good question! Read on for the answer that will complete our discussion.

The Indicator of Hamminess or Spamminess

The calculation described above is sensitive to evidence of hamminess,
particularly when it's in the form of words that show up in far more hams than
spams. This is because probabilities near 0 have a great influence on the
product of probabilities, which is at the heart of Fisher's calculation. In fact,
there is a 1971 theorem that says the Fisher technique is, under certain
circumstances, as powerful as any technique can possibly be for revealing
underlying trends in a product of possibilities (see Resources).

However, very spam-oriented words have f(w)s near 1, and therefore have a
much less significant effect on the calculations. Now, it might be assumed that
this is a good thing. After all, for many people, misclassifying a good e-mail as
spam seems a lot worse than misclassifying a bad e-mail as a ham, because no
great harm is done if a single spam gets through but significant harm might
result from a single good e-mail being wrongly classified as spam and therefore
ignored by the recipient. So it may seem good to be sensitive to indications of
hamminess and less sensitive to indications of spamminess.

However, there are ways to deal with this problem that in real-world testing do
not add a noticeable tendency to wrongly classify good e-mail as spam, but do
significantly reduce the tendency to misclassify spam as ham.

The most effective technique that has been identified in recent testing efforts
follows.

First, “reverse” all the probabilities by subtracting them from 1 (that is, for each
word, calculate 1 - f(w)). Because f(w) represents the probability that a
randomly chosen e-mail from the set of e-mails containing w is a spam, 1 - f(w)
represents the probability that such a randomly chosen e-mail will be a ham.

Now do the same Fisher calculation as before, but on the (1 - f(w))s rather than
on the f(w)s. This will result in near-0 combined probabilities, in rejection of the
null hypothesis, when a lot of very spammy words are present. Call this
combined probability S.

Now calculate:

Equation 4

I is an indicator that is near 1 when the preponderance of the evidence is in
favor of the conclusion that the e-mail is spam and near 0 when the evidence
points to the conclusion that it's ham. This indicator has a couple of interesting
characteristics.

Suppose an e-mail has a number of very spammy words and also a number of
very hammy words. Because the Fisher technique is sensitive to values near 0
and less sensitive to values near 1, the result might be that both S and H are
very near 0. For instance, S might be on the order of .00001 and H might be on
the order of .000000001. In fact, those kinds of results are not as infrequent as
one might assume in real-world e-mails. One example is when a friend
forwards a spam to another friend as part of an e-mail conversation about
spam. In such a case, there will be strong evidence in favor of both possible
conclusions.

In many approaches, such as those based on the Bayesian chain rule, the fact
that there may be more spammy words than hammy words in an example will
tend to make the classifier absolutely certain that the e-mail is spam. But in
fact, it's not so clear; for instance, the forwarded e-mail example is not spam.

So it a useful characteristic of I that it is near .5 in such cases, just as it is near .5
when there is no particular evidence in one direction or the other. When there
is significant evidence in favor of both conclusions, I takes the cautious
approach. In real-world testing, human examination of these mid-valued e-
mails tends to support the conclusion that they really should be classified
somewhere in the middle rather than being subject to the black-or-white
approach of most classifiers.

The Spambayes Project, described in Richie Hindle's article on page 52, takes
advantage of this by marking e-mails with I near .5 as uncertain. This allows the
e-mail recipient to give a bit more attention to e-mails that can't be classified
with confidence. This lessens the chance of a good e-mail being ignored due to
incorrect classification.

Future Directions

To date, the software using this approach is based on one word per token.
Other approaches are possible, such as building a hash table of phrases. It is
expected that the math described here can be employed in those contexts as
well, and there is reason to believe that phrase-based systems will have
performance advantages, although there is controversy about that idea. Future
Linux Journal articles can be expected to cover any developments in such
directions. CRM114 (see Resources) is an example of a phrase-based system
that has performed very well, but at the time of this writing it hasn't been

directly tested against other approaches on the same corpus. (At the time of
this writing, CRM114 is using the Bayesian chain rule to combine p(w)s.)

Conclusion

The techniques described here have been used in projects such as Spambayes
and Bogofilter to improve performance of the spam-filtering task significantly.
Future developments, which may include integrating these calculations with a
phrase-based approach, can be expected to achieve even better performance.

A Python Implementation of the Inverse Chi-Square Function

Resources

Gary Robinson is CEO of Transpose, LLC (www.transpose.com), a company
specializing in internet trust and reputation solutions. He has worked in the
field of collaborative filtering since 1985. His personal weblog, which frequently
covers spam-related developments, is radio.weblogs.com/0101454, and he can
be contacted at grobinson@transpose.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6467s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6467s1.html
http://www.transpose.com
http://radio.weblogs.com/0101454
mailto:grobinson@transpose.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Building with Blogs

Doc Searls

David Sifry

Issue #107, March 2003

The category is hot and huge but still new. Here's a look at your choices.

Name a topic with a community of interest around it. Now go to Google and
look it up. There's a good chance one or more of the top results will include
somebody's weblog (aka blog). Let's take three examples:

• 802.11b: the top listing out of 687,000 results is WiFi news, a weblog by a
pair of journalists, Glenn Fleishman and Adam Engst. The IEEE working
group's site is in the #2 position. The WiFi Alliance's portal is #3.

• Segway: the top listing out of 81,500 results is the Segway company's site,
followed by the Berkeley Segway Portal and then followed by Segway
News—a weblog by Paul Nakada.

• Weblog: out of 2,620,000 results, the top listing is Aaron Swartz's Google
Weblog, followed by the Guardian Limited's weblog. Following them is the
blog of a certain Linux Journal editor who also happens to be writing what
you're reading right now.

Blogs succeed largely because they are extremely native to the Web as Tim
Berners-Lee conceived it in the first place. Here's how weblog software pioneer
Dave Winer explains it:

The first weblog was the first web site, info.cern.ch, the
site built by Tim Berners-Lee at CERN. From this page
TBL pointed to all the new sites as they came on-line.
Luckily, the content of this site has been archived at
the World Wide Web Consortium. (Thanks to Karl
Dubost for the link.)

Linking to sources and crediting them (as Dave does in that last line) has always
been a native ethical and journalistic practice on the Web. While big-time

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://info.cern.ch

broadcasters, publishers and VC-funded wannabes continue to see the Net as
nothing more than a plumbing system for distributing “content” to
“consumers”, blogging software developers have quietly added enormous value
to the linking and crediting functionality of the Web. Dave and other
independent developers have created standards like XML-RPC, SOAP and RSS,
plus open APIs that together turn the Web into a writing and publishing
medium like nothing we've ever seen before.

Blogging is not about “architecting”, “building”, “designing” or “authoring”
anything, because blogs aren't “sites” in the usual sense. Blogs are journals.
With blogs you write directly on the Web. Most posts are short, though they
don't have to be. All are topical and current, or they disappear from the
aggregation sites and services and eventually from the “blogrolls” of listed
favorite links on other blogs.

Each blog is like a fireplace, and each post is like a log heaved on top to keep
the fire burning. Every post has its own “permalink”, so others can point directly
to it. As long as a blog puts out heat and light, others who care about the
author's subject are drawn to it. So are Google and other search engines, which
sift constantly through the ashes.

At their best, blogs are link magnets as well as sources of links, which is why
Google likes them so much. Google equates inbound links with authority and
ranks the results accordingly. More links from more highly linked-to pages
result in higher page ranks. That's why so many blogs rise to the top of so many
subject searches. The whole system—which includes blogs, aggregators, web
services and Google itself—feeds, builds and grows on itself. It also attracts and
feeds on the RSS streams offered up by discussion and news sites ranging from
Slashdot and Linux Journal to the New York Times. RSS is one among a growing
number of free and open technologies created and/or improved by weblog
developers.

As weblogs account for more and more of the traffic in knowledge about a
given subject, they become powerful instruments for hacking common wisdom.
In many categories, they are moving ahead of mainstream journals and portals
and building useful community services where over-funded dot-com efforts
failed spectacularly. One example from that last category is John Hiler's
Cityblogs, which appeared in December 2002. Hiler explains:

Local sites are caught between a rock and a hard
place: either they hire expensive full-time writers to
create content they can't afford or they fire their
writers and turn to automated content: weather
reports, local news and movie listings.

It's a Gordian knot—hire expensive writers or you have
no content—that blogs are uniquely positioned to cut
in two. Now that I've set up the site, I can cover these
three categories in an hour or two a day. As Glenn
“Instapundit” Reynolds put it at a recent conference on
weblogs, “blogging is cheap”.

So blogging is becoming an option in all kinds of places, which means there's a
good chance that you, as a Linux Journal reader, fall into one or both of two
groups:

1. Users who want to set up a blog and start writing on the Web.
2. System administrators and others with scripting and programming skills,

who are either looking to set up a blogging system or to manage or
change a system that's already in place.

To get a handle on both, let's go back to Google.

For better or worse, Google is a commercial company whose services have
become de facto web infrastructure. This is especially true for blogs, which
make liberal use not only of Google's search engine but also of its APIs, which
allow automated queries from programs.

Google's APIs are part of a growing raft of sites and services, mostly hacked
together by enterprising independent developers. Technorati (see Sidebar), for
example, pays attention to fresh links between blogs (leapfrogging referrer
logs) and organizes the information into “watchlists” and other useful listings. If
you want Technorati to tell you who's currently linking to your blog, you can ask
for this information on the site or pay $5 per year for a watchlist sent out each
day by e-mail.

The Technorati Story: How a New Web-Services Product Review Grew Out of a
Research Assignment

Technorati is the creation of this article's coauthor, David Sifry, who is a
cofounder of Linuxcare and Sputnik. It's a good example of a LAMP program—
one based on the de facto platform of Linux, Apache, MySQL and Python, PHP
or Perl. Another LAMP creation is Phillip Pearson's Blogging Ecosystem, which
keeps two Top 300 lists: one for the most-linked-to blogs and one for the blogs
that do the most linking.

Both Technorati and the Blogging Ecosystem are made possible in large part by
RSS, the XML dialect whose acronym means really simple syndication. Thanks
to RSS, every story you read on the Linux Journal web site is syndicated
automatically to anyone who wants to read and point to it or aggregate it with
other sources.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6497s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6497s1.html

The Blogger API is another enabling infrastructure hack. It's used not only by
Blogger (the most popular weblog system, in terms of sign-ups) but by Radio
Userland and Movable Type, the other two leading weblog systems. This API is
what made it possible for one of your authors to hack methods for posting to
various breeds of blogs through e-mail and Jabber. There are many other hacks
just as there are many other blogging systems. SourceForge alone lists dozens
of weblog systems in various states of completion. In the LAMP vein, Geeklog
and CafeLog are PHP-based and use MySQL, as does Drupal. In fact, PHP-Nuke,
PostNuke, Drupal and Slashcode all are flexible enough to serve as weblog
systems. So is Rusty Foster's Scoop, which is written in Perl, as is Movable Type.
Roller is written in Java for J2EE environments; in fact, there is a whole
community of Java bloggers. The list goes on, and it's a long one. So let's break
the list down a bit into four family trees.

Built-for-Blogging Systems

Packages designed from the ground up specifically for blogging include Radio
Userland, Blogger, Movable Type, Greymatter, Roller and CafeLog. Most include
advanced features like the Blogger API, MetaWeblog API, RSS feeds and
subscriptions and XML-RPC pings to aggregator sites such as
www.weblogs.com. Without RSS feeds and XML-RPC pings, blogs don't get
included in blog-based web services like DayPop, Blogdex and Technorati. You
hear a lot about the theory of web services, but in the blog world they're easy
to put into practice.

Also falling into this category is LiveJournal, an open-source project with a large
following that puts a high emphasis on community ties and participation. It's
designed as a centralized system open to many clients on different platforms,
all of which are also open source. While LiveJournal does RSS feeds, it doesn't
make XML-RPC pings to aggregator sites. It also lacks some of the formatting
characteristics one associates with blogs, such as blogrolls in the margins, all of
which makes it less blog-like than the others in this family.

Discussion Sites

After the wild success of discussion sites like Slashdot and Kuro5hin, a number
of software packages emerged with Slashdot-like functionality. Slash is
Slashdot's own code base, Scoop is Kuro5hin's, and mod_virgule is the trust
system on which Advogato is based. These first-generation packages allow you
to set up story posting, site membership, comment moderation, topics or
categories (with icons), polls, post archives and so on. These cover the main
requirements of blogging tools, although many lack more-advanced functions,
such as RSS feeds and XML-RPC pings to aggregators. Given the essentially
personal nature of blogging, even on blogs with more than one author, features
like karma and moderation are essentially unimportant.

http://www.weblogs.com

The growing popularity of PHP invited the second generation of discussion-
oriented sites. PHP-Nuke launched the generation; but when it went
unmaintained, a number of programmers forked the code base and created
PostNuke, Geeklog and PostTEP, among others. This generation also allows
easy theming and better plugin management, so you can easily write code that
might go, say, in a sidebox on the site to perform a specific task. PHP-Nuke is
maintained again, by the way. This family also includes hybrids like PHP-Slash,
which is Jay Bloodworth's port of Slash code from Perl and mod_perl to PHP.

Content Management Systems

Some blogging tools come out of the traditional web site content management
space, including support for multiple authors and permissions and work-flow
enforcement. This is the Vignette StoryServer tradition, which includes Zope,
which is more than just a CMS, Nucleus and Drupal. Content management sites
provide for a more formalized model-view-controller approach, with clear
separations between content, markup and work flow. These tools often are
ideal for creating dynamic web sites with a lot of authors and editors, but they
tend to lack some of the advanced features found in blogging tools, such as RSS
feeds and XML-RPC pings. They also lack Blogger and MetaWeblog APIs for
posting and editing content from other non-web browser-based applications.

Wikis

Wikis are another way to create dynamic web sites. They allow anyone to edit
and mark up a page easily, while still maintaining version control. Some
blogging tools are based on Wiki code or on Wiki ideas. These include SnipSnap,
TWiki, Tiki, WikiWiki, MoinMoin and ZWiki. They offer some content
management but focus mostly on ease of editing and posting and speed of
updates, neglecting such blogging functions as dated entries and RSS feeds.
Other families worth noting are the Java-based blogging tools, such as Roller
and WebForum; and Python- and Ruby-based tools, such as Pyblosxom and
tDiary, which is hot in Japan.

We list all these families because your particular needs may not be restricted to
blogging. But if blogs are what you want to do, or what you want to support,
you need to pay close attention to what works best for blogging purposes.

Simply put, your blogging system doesn't qualify for the label if it can't answer
yes to the following questions:

1. Can a user dynamically post to a site?
2. Are posts easy to create, review and edit again after they're posted?
3. Can an administrator limit who posts to the front page?

4. Can a user edit in a browser (at a minimum) or another tool of his or her
choice?

5. Does its page format allow blogrolls and other sections outside the daily
posting area?

6. Does it produce RSS feeds?
7. Does every post have a permanent URL (or permalink)?
8. Do current posts have unique URLs?
9. Can search engines crawl the archives?

10. Are the archives stable and safe from rot?

The big three—Blogger, Movable Type and Radio Userland—qualify on all those
grounds, because they were built from the ground up as pure blogging
systems. This is also why most of the blogs listed in the Blogging Ecosystem's
Top 300 lists are produced by big three tools.

We've been experimenting at Linux Journal with various weblog systems,
hosted on a server kindly provided by Penguin Computing. Most of our efforts
have been focused on Movable Type, which is the only one of the big three that
hosts on Linux and the one that appears to have the most momentum in the
Linux development community. The source code is available to end users but
not under an open-source license.

Movable Type offers two licenses of its own: a free (as in beer) one for
noncommercial use and a $150 US one for commercial use. While this
disqualifies Movable Type as an option for writers and publishers, including
Linux Journal, who prefer to use free software, many blogging organizations
that support the Open Source and Free Software movements, such as the
Electronic Frontier Foundation and Creative Commons, are using Movable
Type.

So what are your choices here? If you want to put up a bare-bones blog and
don't mind if it doesn't say yes to all the questions listed above, LiveJournal is a
handy and popular choice. You'll be left outside the Blogging Ecosystem (as
roughly defined by Phil Pearson's aggregation site by that name), but you'll be
using mostly GPLed open-source software and be involved with a lively
community.

If you want your blog to thrive in the Ecosystem and don't care too much about
what's happening on the back end (just as you might not care what's behind a
Hotmail-type web e-mail system), you might consider Blogger or Radio
Userland. Both allow you to blog from any server to which you can FTP data
and serve HTTP. For example, to do a Blogger blog, go to www.blogger.com, set
up an account, make it point to your FTP server with your user name, password

http://www.blogger.com

and web server HTML directory. In Debian the default is /var/www. On Red Hat,
it's /home/httpd/html. This is a simple, easy-to-set-up blog system and a
popular choice—even for a hacker who doesn't want to be bothered setting up
everything from scratch.

If you want a full-featured Linux-based blogging system for yourself or your
organization, and you don't have a problem with its licensing scheme, Movable
Type is your best choice. Installing it is almost easy enough for novices. It's also
extremely flexible, capable and easy to maintain.

If platform and licensing issues keep you away from the big three, you need to
look among the discussion site and content management systems. If you're
already using a PHP-based system such as PHP-Nuke, you might consider
adapting your current system or going to another one in the same general
family, such as Geeklog or Drupal. None are as easy to install as Movable Type,
but none are hard to maintain once you master their methods.

Command-line tools for blog editing and posting exist on Linux as well. One
example is Philip Myelin's Bzero. Philip also is the author of the Python
Community Server and phpStorageSystem, both of which are clones of the
Userland Radio Community Server. Running one of these applications on your
web server allows you to host Radio-based blogs on your Linux box.

If none of the alternatives suits your fancy, you might consider creating or
improving an open-source built-for-blogging system. Greymatter, which is
written in Perl and GPLed, had some good momentum going until 2001, when
Noah Grey decided he had better things to do. You could pick up where he left
off, or you could build a new blog system from scratch.

Countless options are available. URLDIR can generate a variety of feature
comparison tables that cover all the systems listed here and then some. If
you're at the tire-kicking stage, it's a good place to start.

But don't make a decision before looking at the blogs produced by these
different systems. Follow David Ogilvy's classic advice to companies looking for
an advertising agency: “Look for work you envy, and find out who does it.”

Blosxom: Think of It as cat(1) with Stylesheets

Doc Searls is senior editor of Linux Journal.

David Sifry is cofounder of Linuxcare and Sputnik, where he is also CTO.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/107/6497s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Getting Started with Emacs

Charles Curley

Issue #107, March 2003

Emacs is the text editor with everything. Learn the basics—maybe you'll even
want to keep your calendar on it.

This article is a whirlwind introduction to Emacs that assumes you have Emacs
installed and running (easy enough on most Linux distributions). It also
assumes that you have used Emacs' built-in tutorial. Program development in
Emacs is not the topic, as that was covered in my June 2002 LJ article “Emacs:
the Free Software IDE” [available at www.linuxjournal.com/article/5765].

To launch Emacs from an xterm, enter emacs &. The ampersand puts Emacs
into the background. As X provides the display for Emacs, this setup is fine.

You also can run Emacs in a console by entering emacs without the ampersand.
To run Emacs in an xterm without opening a new window, launch it with emacs

-nw. These console and xterm modes are great for situations where you don't
have X, such as an SSH connection to a remote server. But if you have SSH set
up to forward X, you can run Emacs (and other X applications) remotely.

If you haven't taken the Emacs tutorial, now is the time to do it. Pressing Ctrl-H
then T gets you to it. The tutorial is ancient as computers go (1985), so it
ignores cursor keys and other modern conveniences. Emacs supports these
features but the tutorial doesn't take them into account. It's a good idea to be
aware of, if not learn, some of the Emacs keystrokes, though. You can set bash
and many other GNU programs to use them. So, for example, Ctrl-B and Ctrl-N
can do exactly the same things in Emacs as they do in bash. In fact, Emacs-style
key bindings are the default in bash.

The tutorial should teach you basic cursor movement, how to abort an Emacs
command, Emacs windowing, the relationship between buffers and files and so
on. Probably the most important thing to remember from the tutorial is the
movement keys are usually a given key (F for forward) with different modifiers

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/098/5765.html

for different ranges. For example, Ctrl-F moves one character forward, and M-F
moves a word forward (M- is Emacs notation for Meta, which on most
keyboards means the Alt key).

Emacs existed long before web browsers, so it uses the term frame for what X
calls a window, and window for a section within a frame. As this is an Emacs
article, this article uses Emacs terminology. To display a new window with a
horizontal split, use Ctrl-X 2. For a new window with a vertical split, use Ctrl-X 3.
Whereas Ctrl-X 5 1 gives you a whole new frame to play in, Ctrl-X 0 and Ctrl-X 5
0 kill off the current window and frame, respectively.

Another highlight of the tutorial is an introduction to Emacs' incremental search
commands. They make life much easier, so learn and remember them.

Ctrl-H is the gateway to Emacs' help system. Pressing Ctrl-H ? gives you a menu
for different parts of the help system. The Info system (Ctrl-H I) gives you access
to FSF documentation in FSF's Info format. A form of hypertext that predates
the World Wide Web, it is arranged in a tree structure. You also can go to an
Info node for an Emacs function with Ctrl-H Ctrl-F. This section provides
information on the current major and minor modes (more on those in a
moment), the warranty and license under which Emacs is provided and other
information. Because Emacs' help system is displayed by Emacs, the cursor
movement keystrokes you learned in the tutorial apply to the help system.

Getting in the Mode

According to the top Emacs info page, Emacs is the extensible, customizable,
self-documenting, real-time display editor. It is extensible because it is written
in Emacs Lisp, or elisp, a dialect of Lisp especially customized for Emacs and
text processing. You therefore can extend Emacs by writing code in elisp.
Furthermore, you can customize it by changing the values of existing elisp
variables. Self-documenting might be a slight exaggeration, but elisp does
encourage programmers to document. And as we've seen, there is extensive
help available.

Users also can customize Emacs by adapting it to specific applications. Do this
by switching to what is called a major mode. Only one major mode can be
active in a buffer at a time, but you can switch major modes on the fly. For
example, when writing CGI scripts it is useful to toggle between Perl mode and
HTML Helper mode.

To identify the current modes active in a buffer, see the mode line. In
parentheses you will find one or more modes, with the current major mode
listed first. Not all minor modes identify themselves in the mode parentheses,
but their action is obvious, such as Column Number mode.

Major Modes

Major modes are generally associated with file extensions. A Lisp variable, auto-
mode-alist, does this association, and we'll show you how to add to it. Emacs
also recognizes associations with shebang entries in the first line of scripts, like
this one for Perl:

#! /usr/bin/perl

And you can always force the mode in the first line of a document by
surrounding it with -*-, like this:

-*- shell-script -*-

To switch manually from one major mode to another, use M-X mode-name. For
example, M-X perl-mode puts Emacs into the major mode for editing Perl.

Major modes provide a number of useful facilities. They usually provide custom
indentation and pretty printing options suitable to the subject at hand. There is
often some way to insert a comment with a short key sequence. A region of
text can be commented out with M-X comment-region. One advantage of using
Emacs for all your editing is the functions (and their keystrokes and menu
entries) available in one major mode tend to be available in another, so if you
know how to edit C in Emacs, you probably can edit SQL in Emacs as well
(Figure 1).

Figure 1. C mode in Emacs, showing font locking (color syntax highlighting). The indenting is
courtesy of C mode.

Major modes typically provide what Emacs calls font locking, a feature everyone
else calls syntax coloring. It automatically associates syntax with colors. For
example, comments show up in red, data types in green and strings in a light
red. Another advantage of editing with Emacs is that color associations operate

across modes, so comments are red regardless of whether you are working in
assembler or XML.

Major modes redefine how keystrokes operate, usually the Tab and Delete
keys. Also, major modes have mode-specific commands accessed with the
prefix Ctrl-C. For example, to validate an SGML document in PSGML mode, use
Ctrl-C Ctrl-V.

One of the most powerful major modes around is Lennart Staflin's PSGML
mode (see Resources). It facilitates inserting SGML or XML tags and provides
automatic pretty printing comparable to C mode. PSGML mode has font locking
and other goodies, but it also reads the DTD and uses it to enforce proper tag
nesting. For example, in DocBook, it won't let you insert a <sect4> directly into a
<sect1>. It also is a front end for a validator (Figure 2).

Figure 2. Editing a Linux Documentation Project document in the DocBook SGML DTD in
Emacs. The font locking highlights tags and entities for you.

Other major modes that almost anyone will find useful are Dired mode, Ediff
mode, W3 and the calendar and diary. Dired mode is for editing directories.
You can navigate from directory to directory, visit files and edit file metadata,
such as permissions and ownership. One of the more powerful features of
Dired mode is the ability to grep a number of files and have Dired mark the
hits. You can then visit each hit in sequence and edit it. This allows you to
manipulate files en masse, including renaming them or deleting them.

One mode that has proven to be quite useful is the calendar/diary. Not just any
calendar tool, Calendar mode allows you to do date manipulations in and
conversions between Gregorian and Julian, Copt, Hebrew and Islamic
calendars. And, for something completely different, date your next intra-office
memo in the Persian or Mayan calendar. Or, send your next bug report to the
Free Software Foundation in the French Revolutionary Calendar (Figure 3).

https://secure2.linuxjournal.com/ljarchive/LJ/107/6242f3.large.jpg

Figure 3. Emacs' Calendar and Diary

Somewhat more useful than obscure calendars is the diary. With the diary, you
can set appointments, anniversary reminders, cyclical events (such as “every
third Thursday of the month”) and other types of events. If you specify the
event time, Emacs will remind you as the time approaches. Not only is this diary
system useful, but it runs in Emacs, so it runs on any computer on which Emacs
runs—and that's most of them. The diary file is portable as well.

Ediff mode is useful for selectively applying patches. You also can use it to
update files on several computers, such as my .emacs and diary files. Because it
is selective, ediff lets you propagate changes in both directions. This can be
important if you set appointments on your laptop and your secretary sets them
on your desktop (Figures 4 and 5).

Figure 4. Diffing two files. Emacs shows not only which lines are changed, but what the
changes are.

Figure 5. The control window for Ediff mode.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6242f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6242f3.large.jpg

If browsing the World Wide Web is your thing, take a close look at William M.
Perry's W3 mode. It is a web browser written in Emacs Lisp.

Minor Modes

Add-ons, called minor modes, supplement major modes. Most minor modes
operate regardless of the major mode, so they can operate in different
documents. For example, Show Paren mode matches parentheses for you. It is
useful for the C programmer even in Text mode, and it's a godsend to the Lisp
programmer.

Minor modes can be turned on and off as you wish. For example, when
programming, Auto Fill mode (for filling, or line wrapping, paragraphs) is useful
in comments, but a nuisance outside of them.

Some minor modes are global; they extend across all buffers when they are
active. Others are local to a buffer. To activate a given mode, append -mode to
its name and execute that command. So to activate Parentheses mode, press
M-X then type show-paren-mode. To deactivate it, run the command again.

Several useful buffer-local minor modes are Abbrev mode (autocorrection on
the fly), Auto Save mode, Font-Lock mode (color highlighting), Flyspell mode
(spell checking on the fly) and Overwrite mode. Two useful minor modes that
apply to all buffers are Line Number mode and Column Number mode. These
print the current position of point in the mode line, usually over to the right.

Another useful mode is Ispell, which lets you spell check your buffer. It has
special submodes for checking e-mail messages, programming language
comments and strings, and other special uses.

Your .emacs File

Key to customizing Emacs is the initialization file, ~/.emacs. Administrators
usually provide a global init file. If you don't like it you can tell Emacs to ignore it
in your own init file. And, you can start Emacs with no init file with emacs -q,
useful for debugging. The init file is nothing but some elisp used to set up
Emacs the way you (or your administrator) like it (Figure 6).

https://secure2.linuxjournal.com/ljarchive/LJ/107/6242f6.large.jpg

Figure 6. Editing the author's .emacs, an example of Emacs Lisp, in Emacs.

You also can set variables in the init file. I customize HTML Helper mode by
setting some mode variables:

(setq html-helper-do-write-file-hooks t)
(setq html-helper-build-new-buffer t)
(setq html-helper-address-string "<a href=
\"mailto:ccurley@trib.com\">Charles
Curley")

Short useful functions, or macros, also go into .emacs. For example, the
following function inserts today's date at point:

(defun insert-date ()
 "Insert the current date according to the variable
\"insert-date-format\"."
 (interactive "*")
 (insert (format-time-string insert-date-format
 (current-time))))

Keystrokes and key sequences also can be bound to functions. This allows you
to use the key sequence to activate the function. For example, having written
the function insert-date, I can bind it to the F3 function key with this line:

(global-set-key [f3] 'insert-date)

You also can use this capability to remap your keyboard. If you don't like some
of the long key sequences in Emacs, you can rebind them.

The other way to customize Emacs is with the Customize menu, accessed with
M-X customize or from the Options pull-down menu. This extensive menu
system allows users to change variables and store the changes in your init file.

Emacs as a Server

A number of programs, such as crontab and mutt, invoke an external program
as their editor. To let them run Emacs, set Emacs up to run as a server by
putting this line into your .emacs file:

https://secure2.linuxjournal.com/ljarchive/LJ/107/6242f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6242f6.large.jpg

(server-start)

Next, set the environment variable EDITOR or VISUAL to emacsclient. In Bash,
add this to your /etc/bashrc or your ~/x.bash_profile:

export VISUAL=emacsclient

Now, when you execute crontab -e or edit a message in mutt, you edit in your
existing Emacs session instead of waiting for a new Emacs to start up. To finish
editing and make emacslient exit, end your session in that buffer with Ctrl-C #
instead of Ctrl-X K.

For emacsclient to work, Emacs must be running when the external program
invokes it. This is consistent with the preferred way of using Emacs, which is to
start Emacs when you log in and leave it running until you log out. One result of
using emacsclient is you only have one instance of Emacs running at any one
time. While memory is cheap today, it wasn't always so. And even today, if you
want to run Linux on your laptop or elderly computers, conserving memory is
always a good idea.

You might want to have Emacs edit your mail in Mail mode. If you use mutt, add
this to your .emacs file:

;; Automatically go into mail-mode if
filename starts with /tmp/mutt
(setq auto-mode-alist (append (list (cons
"^\/tmp\/mutt" 'mail-mode))
 auto-mode-alist))

Of course, to comply with the RFCs on netiquette, you will want Auto Fill mode
active when you edit mail. Most major modes have a hook they execute on
entering the mode and another they execute on leaving. Here is how to get Mail
mode to invoke Auto Fill mode:

(defun my-mail-mode-hook ()
 (auto-fill-mode 1)
)
(add-hook 'mail-mode-hook 'my-mail-mode-hook)

When you are done writing your e-mail, if you want to annoy the NSA, use
Spook. To protest the Communications Decency Act (a decent thing to do) and
annoy a lot of American politicians, see Bruce.

Finally, before we take our leave of this wild and woolly editor, let me bring the
etc directory (in the Emacs directory tree) to your attention. It contains a
number of useful documents, such as an Emacs English language reference
card, in source (refcard.tex) and postscript (refcard.ps) form. Translations of the
reference card into other languages are available. There is also some
background material on Emacs and the GNU Project and a copy of the GPL.

Something you rarely find in proprietary software (at least, not deliberately) is
present in Emacs: humor. Check out the bug report from the year 2199, the
word list for Spook mode, some explanations of what Emacs stands for and
more. And if you really want to exercise your font server, visit the file “HELLO”.

Resources

email: ccurley@trib.com

Charles Curley (w3.trib.com/~ccurley) writes about and teaches Linux.
Naturally, he wrote this article using Emacs on Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6242s1.html
mailto:ccurley@trib.com
http://w3.trib.com/~ccurley
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Signals for the Application Programmer

Dr. B. Thangaraju

Issue #107, March 2003

Signals are a fundamental method for interprocess communication ad are used
in everything from network servers to media players. Here's how you can use
them in your applications.

A good understanding of signals is important for an application programmer
working in the Linux environment. Knowledge of the signaling mechanism and
familiarity with signal-related functions help one write programs more
efficiently.

An application program executes sequentially if every instruction runs properly.
In case of an error or any anomaly during the execution of a program, the
kernel can use signals to notify the process. Signals also have been used to
communicate and synchronize processes and to simplify interprocess
communications (IPCs). Although we now have advanced synchronization tools
and many IPC mechanisms, signals play a vital role in Linux for handling
exceptions and interrupts. Signals have been used for approximately 30 years
without any major modifications.

The first 31 signals are standard signals, some of which date back to 1970s
UNIX from Bell Labs. The POSIX (Portable Operating Systems and Interface for
UNIX) standard introduced a new class of signals designated as real-time
signals, with numbers ranging from 32 to 63.

A signal is generated when an event occurs, and then the kernel passes the
event to a receiving process. Sometimes a process can send a signal to other
processes. Besides process-to-process signaling, there are many situations
when the kernel originates a signal, such as when file size exceeds limits, when
an I/O device is ready, when encountering an illegal instruction or when the
user sends a terminal interrupt like Ctrl-C or Ctrl-Z.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Every signal has a name starting with SIG and is defined as a positive unique
integer number. In a shell prompt, the kill -l command will display all signals
with signal number and corresponding signal name. Signal numbers are
defined in the /usr/include/bits/signum.h file, and the source file is /usr/src/
linux/kernel/signal.c.

A process will receive a signal when it is running in user mode. If the receiving
process is running in kernel mode, the execution of the signal will start only
after the process returns to user mode.

Signals sent to a non-running process must be saved by the kernel until the
process resumes execution. Sleeping processes can be interruptible or
uninterruptible. If a process receives a signal when it is in an interruptible sleep
state, for example, waiting for terminal I/O, the kernel will awaken the process
to handle the signal. If a process receives a signal when it is in uninterruptible
sleep, such as waiting for disk I/O, the kernel defers the signal until the event
completes.

When a process receives a signal, one of three things could happen. First, the
process could ignore the signal. Second, it could catch the signal and execute a
special function called a signal handler. Third, it could execute the default
action for that signal; for example, the default action for signal 15, SIGTERM, is
to terminate the process. Some signals cannot be ignored, and others do not
have default actions, so they are ignored by default. See the signal(7) man page
for a reference list of signal names, numbers, default actions and whether they
can be caught.

When a process executes a signal handler, if some other signal arrives the new
signal is blocked until the handler returns. This article explains the
fundamentals of the signaling mechanism and elaborates on signal-related
functions with syntax and working procedures.

Signals inside the Kernel

Where is the information about a signal stored in the process? The kernel has a
fixed-size array of proc structures called the process table. The u or user area
of the proc structure maintains control information about a process. The major
fields in the u area include signal handlers and related information. The signal
handler is an array with each element for each type of signal being defined in
the system, indicating the action of the process on the receipt of the signal. The
proc structure maintains signal-handling information, such as masks of signals
that are ignored, blocked, posted and handled.

Once a signal is generated, the kernel sets a bit in the signal field of the process
table entry. If the signal is being ignored, the kernel returns without taking any

action. Because the signal field is one bit per signal, multiple occurrences of the
same signal are not maintained.

When the signal is delivered, the receiving process should act depending on the
signal. The action may be terminating the process, terminating the process
after creating a core dump, ignoring the signal, executing the user-defined
signal handler (if the signal is caught by the process) or resuming the process if
it is temporarily suspended.

The core dump is a file called core, which has an image of the terminated
process. It contains the process' variables and stack details at the time of
failure. From a core file, the programmer can investigate the reason for
termination using a debugger. The word core appears here for a historical
reason: main memory used to be made from doughnut-shaped magnets called
inductor cores.

Catching a signal means instructing the kernel that if a given signal has
occurred, the program's own signal handler should be executed, instead of the
default. Two exceptions are SIGKILL and SIGSTOP, which cannot be caught or
ignored.

sigset_t is a basic data structure used to store the signals. The structure sent to
a process is a sigset_t array of bits, one for each signal type:

typedef struct {
 unsigned long sig[2];
 } sigset_t;

Because each unsigned long number consists of 32 bits, the maximum number
of signals that may be declared in Linux is 64 (according to POSIX compliance).
No signal has the number 0, so the other 31 bits in the first element of sigset_t
are the standard first 31 signals, and the bits in the second element are the
real-time signal numbers 32-64. The size of sigset_t is 128 bytes.

Handling Signals

There are many system calls and signal-supported library functions, which
provide an easy and efficient way of handling the signals in a process. We start
with the standard old signal system call, then we discuss some useful functions
like sigaction, sigaddset, sigemptyset, sigdelset, sigismember and kill.

The Signal System Call

The signal system call is used to catch, ignore or set the default action of a
specified signal. It takes two arguments: a signal number and a pointer to a
user-defined signal handler. Two reserved predefined signal handlers are

available in Linux: SIG_IGN and SIG_DFL. SIG_IGN will ignore a specified signal,
and SIG_DFL will set the signal handler to the default action for that signal (see
man 2 signal).

On success, the system call returns the previous value of the signal handler for
the specified signal. If the signal call fails, it returns SIG_ERR. Listing 1 explains
how to catch, ignore and set the default action of SIGINT. Try pressing Ctrl-C,
which sends SIGINT, during each part.

Listing 1. Catching and Ignoring a Signal

sigaction

The sigaction system call can be used instead of signal because it has lot of
control over a given signal. The syntax of sigaction is:

int sigaction (int signum,
 const struct sigaction *act,
 struct sigaction *oldact);

The first argument, signum, is a specified signal; the second argument,
sigaction, is used to set the new action of the signal signum; and the third
argument is used to store the previous action, usually NULL.

The sigaction structure is defined as:

struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
}

The members of the sigaction structure are described as follows.

sa_hander: a pointer to a user-defined signal handler or predefined signal
handler (SIG_IGN or SIG_DFL).

sa_mask: specifies a mask of signals when the signal is handled. To avoid the
blocking of signals, the SA_NODEFER or SA_NOMASK flags can be used.

sa_flags: specifies the action of signal. Sets of flags are available for controlling
the signal in a different manner. More than one flag can be used by ORing:

• SA_NOCLDSTOP: if we specify the SIGCHLD signal, when the child has
stopped its execution it does not receive notification.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6483l1.html

• SA_ONESHOT or SA_RESETHAND: restores the default action of the signal
after the user-defined signal handler is executed. To avoid setting the
default action, SA_RESTART can be used.

• SA_NOMASK or SA_NODEFER prevents masking the signal. SA_SIGINFO is
used to receive signal-related information.

sa_sigaction: if the SA_SIGINFO flag is used in sa_flags, instead of specifying the
signal handler in sa_handler, sa_sigaction should be used.

sa_sigaction is a pointer to a function that takes three arguments, not one as
sa_handler does, for example:

void my_handler (int signo, siginfo_t *info,
 void *context)

Here, signo is the signal number, and info is a pointer to the structure of type
siginfo_t, which specifies the signal-related information; and context is a pointer
to an object of type ucontext_t, which refers to the receiving process context
that was interrupted with the delivered signal.

Listing 2 is similar to Listing 1 but uses the sigaction system call instead of the
signal system call. Listing 3 explains signal-related information using the
SIG_INFO flag.

Listing 2. Same as Listing 1, but with Sigaction

Listing 3. Using SA_SIGINFO and sa_sigaction to Extract Information from a
Signal

Sending Signals

Until now, we've been pressing Ctrl-C to send SIGINT from the shell. To do it
from a program, use the kill system call, which accepts two arguments, process
ID and signal number:

int kill (pid_t process_id, int signal_number);

If the pid is positive, the signal is sent to a particular process. If the pid is
negative, the signal is sent to the process whose group ID matches the absolute
value of pid.

As you might expect, the kill command, which exists as a standalone program (/
bin/kill) and is also built into bash (try help kill) uses the kill system call to send
a signal.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6483l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6483l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6483l3.html

Not all processes can send signals to each other. In order for one process to
send a signal to another, either the sender must be running as root, or the
sender's real or effective user ID must be the same as the real or saved ID of
the receiver. This means your shell, running as you, can signal a setuid program
that you started, but that is now running as root, for example:

cp /bin/sleep ~/rootsleep
sudo chmod u+s ~/rootsleep
./rootsleep 40
killall rootsleep
rm ~/rootsleep

A normal user can't send signals to system processes such as swapper and init.

You also can use kill to find out if a process exists. Specify a signal number of 0,
and if the process exists, the kill returns zero; if it doesn't, kill returns -1.

Listing 4. Programs to Send and Receive SIGINT

Listings 4 and 4a explain how to use the kill system call. First, execute the 4a
program in one window and get its process ID. Now, run the Listing 4 program
in another window and give the 4a example's pid as the input.

This article should help you understand the fundamental concept of a signal
and some of its importance. Try the sample programs, and see the man pages
for the system calls and the references in Resources for more information.

Resources

email: balasubramanian.thangaraju@wipro.com

Dr B. Thangaraju received a PhD in Physics and worked as a research associate
for five years at the Indian Institute of Science, India. He is presently working as
a manager at Talent Transformation, Wipro Technologies, India. He has
published many research papers in renowned international journals. His
current areas of research, study and knowledge dissemination are the Linux
kernel, device drivers and real-time Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6483l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6483s1.html
mailto:balasubramanian.thangaraju@wipro.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using the Input Subsystem, Part II

Brad Hards

Issue #107, March 2003

No matter how many buttons an input device has or how many kinds of events
it can generate, you can now work with it from user space.

In last month's article, we saw how the Linux input subsystem worked inside
the kernel, ending with a quick mention of the event handlers. Each handler
essentially provides a different user-space API, converting input events into the
particular format that makes up that API.

One of the key aspects of the input subsystem integration into Linux is the
availability of the event interface. This basically exposes the raw events to
userspace through a collection of character device nodes—one character
device node per logical input device. The event interface is a really powerful
technique, because it allows the manipulation of the events in userspace
without information loss. For example, legacy mouse interfaces support only
two relative axes and up to five buttons. These are normally mapped to the two
real axes and three real buttons, with the fourth and fifth buttons logically
being mapped to the scroll wheel up and scroll wheel down events.

However, this mapping becomes a problem when trying to use a mouse with a
scroll wheel and more than three buttons, because any additional buttons can
be mapped only to an existing button. The legacy APIs also impede use of
advanced input devices, such as space balls and other devices' with many axes.
By contrast, the event API provides full access to the devices capabilities, and it
even includes a per-device description of those capabilities and other device
characteristics.

This month's article focuses on the various ioctl capabilities of the event
interface, in addition to the normal read and write calls.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Finding the Version of the Event Interface

The event interface supports determining the version of the event device code,
using the EVIOCGVERSION ioctl function. The argument is an int (32 bits) and is
meant to be interpreted as a major version (two high bytes), a minor version
(third byte) and a patch level (low byte). The same value is returned from each
event device on a machine.

An example of the EVIOCGVERSION is shown in Listing 1. The first argument to
the ioctl function is an open file descriptor for the event device node (for
example, /dev/input/event0). Notice that you have to pass a pointer to the
integer variable, not the variable itself, as the third argument to the ioctl call.

Listing 1. Sample EVIOCGVERSION Function

Finding Information about the Device's Identity

The event interface supports retrieving information associated with the
underlying device using the EVIOCGID ioctl. The argument is a pointer to an
input_id structure; the input_id structure is defined as shown in Listing 2. The
__u16 data type is a Linux-specific, unsigned 16-bit integer. You can safely cast it
to a standard uint16_t in your code.

Listing 2. iput_id Structure Definitions

The bus type is the only field that contains accurate data. You should probably
consider it to be an opaque, enumerated type, and compare it with the various
BUS_x type definitions provided in <linux/input.h>. The vendor, product and
version fields are bus type-specific information relating to the identity of the
device. Modern devices (typically using PCI or USB) do have information that
can be used, but legacy devices (such as serial mice, PS/2 keyboards and game
ports on ISA sound cards) do not. These numbers therefore are not meaningful
for some values of bus type.

An example of the EVIOCGID ioctl is shown in Listing 3. This example calls the
ioctl and then prints out the results. The case logic shows all current bus types.
Here is an example of running that code: vendor 045e product 001d version

0111 is on a Universal Serial Bus.

Listing 3. Sample EVIOCGID ioctl

In addition to the type of bus and the vendor, product and version information,
some devices can provide strings that make up meaningful names. This can be
obtained from the event interface using the EVIOCGNAME ioctl. This ioctl
provides a string and returns the length of the string (or a negative error value).

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l3.html

If the string is too long to fit into the argument, it will be truncated. An example
is provided in Listing 4. If it seems strange that the argument is not &name,
remember the name of an array is the same as a pointer to the first element.
Therefore, &name would be a pointer to a pointer to the first element, which is
not what we want. If you really want to use a dereference, use &(name[0]).

Listing 4. Example Trunctated String

Here is an example of running that event code:

The device on /dev/input/event0 says its name
 is Logitech USB-PS/2 Optical Mouse

Not all devices contain meaningful names, however, so kernel input drivers try
to provide something meaningful. For example, USB devices without
manufacturer or product strings concatenate the vendor and product ID
information.

Although device identity and name information is often useful, it may not be
sufficient information to tell which device you have. For example, if you have
two joysticks that are the same, you may need to identify them based on which
port they use. This is usually known as topology information, and you can get
this from the event interface using the EVIOCGPHYS ioctl. Like EVIOCGNAME,
this provides a string and returns the length of the string (or a negative error
number). An example is shown in Listing 5; running that example will produce
something like:

The device on /dev/input/event0 says its path
 is usb-00:01.2-2.1/input0

Listing 5. Using EVIOCGPHYS for Topology Information

To understand what this string is showing, you need to break it down into
parts. The usb part means this is a physical topology from the USB system. The
00:01.2 is the PCI bus information for the USB host controller (in this case, bus
0, slot 1, function 2). The 2.1 shows the path from the root hub to the device. In
this case, the upstream hub is plugged in to the second port on the root hub,
and that device is plugged in to the first port on the upstream hub. input0
means this is the first event device on the device. Most devices have only one,
but multimedia keyboards may present the normal keyboard on one interface
and the multimedia function keys on a second interface. This topology example
is shown in Figure 1.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l5.html

Figure 1. Keyboard Topology

This setup doesn't help if you swap the cables on two identical devices. The
only thing that can help in this case is if the device has some form of unique
identifier, such as a serial number. You can get this information using the
EVIOCGUNIQ ioctl. An example is shown in Listing 6. Most devices don't have
such an identifier, and you will get an empty string from this ioctl.

Listing 6. Finding a Unique Identifier

Determining the Device Capabilities and Features

For some applications, it might be enough to know the device identity, because
this would allow you to handle any special cases depending on what device is
being used. However, it doesn't scale well; consider a case where you want to
enable scroll wheel handling only if the device has a scroll wheel. You really
don't want to have to list the vendor and product information for every mouse
with a scroll wheel in your code.

To avoid this problem, the event interface allows you to determine which
features and capabilities are available for a particular device. The types of
features supported by the event interface are:

• EV_KEY: absolute binary results, such as keys and buttons.
• EV_REL: relative results, such as the axes on a mouse.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l6.html

• EV_ABS: absolute integer results, such as the axes on a joystick or for a
tablet.

• EV_MSC: miscellaneous uses that didn't fit anywhere else.
• EV_LED: LEDs and similar indications.
• EV_SND: sound output, such as buzzers.
• EV_REP: enables autorepeat of keys in the input core.
• EV_FF: sends force-feedback effects to a device.
• EV_FF_STATUS: device reporting of force-feedback effects back to the host.
• EV_PWR: power management events.

These are only the types of features; a wide range of individual features can be
found within each type. For example, the EV_REL feature type distinguishes
between X, Y and Z axes and horizontal and vertical wheels. Similarly, the
EV_KEY feature type includes literally hundreds of different keys and buttons.

The capabilities or features of each device can be determined through the
event interface, using the EVIOCGBIT ioctl. This function allows you to
determine the types of features supported by any particular device, for
example, whether it has keys, buttons or neither. It further allows you to
determine the specific features that are supported, for example, which keys or
buttons are present.

The EVIOCGBIT ioctl takes four arguments. If we consider it as ioctl(fd,
EVIOCGBIT(ev_type, max_bytes), bitfield), then the fd argument is an open file
descriptor; ev_type is the type of features to return (with 0 as a special case,
indicating the list of all feature types supported should be returned, rather than
the list of particular features for that type); max_bytes shows the upper limit on
how many bytes should be returned; and bitfield is a pointer to the memory
area where the result should be copied. The return value is the number of
bytes actually copied on success or a negative error code on failure.

Let's look at a couple of examples of the EVIOCGBIT ioctl call. The first example,
Listing 7, shows how to determine the types of features present. It determines
how much memory is required for the bit array using evtype_bitmask, based on
the EV_MAX definition in <linux/input.h>. The ioctl is then submitted, and the
event layer fills in the bit array. We then test each bit in the array and show
where the bit was set, which indicates the device does have at least one of this
type of feature. All devices support the EV_SYN feature type in 2.5; the input
core sets this bit.

Listing 7. Determining Features with EVIOCGBIT

When run, with a keyboard as the target, the example in Listing 7 produces:

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l7.html

Supported event types:
 Event type 0x00 (Synchronization Events)
 Event type 0x01 (Keys or Buttons)
 Event type 0x11 (LEDs)
 Event type 0x14 (Repeat)

With a mouse as the target, the example produces:

Supported event types:
 Event type 0x00 (Synchronization Events)
 Event type 0x01 (Keys or Buttons)
 Event type 0x02 (Relative Axes)

Retrieving Input from (and to) the Device

Having determined what capabilities a particular device has, you know what
types of events it will produce and what types of events you can send.

Retrieving events from a device requires a standard character device “read”
function. Each time you read from the event device (e.g., /dev/input/event0),
you will get a whole number of events, each consisting of a struct input_event.

Listing 8. Checking for Busy Spots

The example shown in Listing 8 does a busy loop on the open file descriptor,
trying to read any events. It filters out any events that don't correspond to keys
and then prints out the various fields in the input_event structure. Running this
while typing on my keyboard produced:

Event: time 1033621164.003838, type 1, code 37, value 1
Event: time 1033621164.027829, type 1, code 38, value 0
Event: time 1033621164.139813, type 1, code 38, value 1
Event: time 1033621164.147807, type 1, code 37, value 0
Event: time 1033621164.259790, type 1, code 38, value 0
Event: time 1033621164.283772, type 1, code 36, value 1
Event: time 1033621164.419761, type 1, code 36, value 0
Event: time 1033621164.691710, type 1, code 14, value 1
Event: time 1033621164.795691, type 1, code 14, value 0

You get one event per key press and another per key release.

This read interface has all the normal characteristics of a character device,
meaning you don't need to use a busy loop. You can simply wait until your
program needs some input from the device and then perform the read call. In
addition, if you are interested in the input from a number of devices, you can
use the poll and select functions to wait on a number of open devices at the
same time.

Sending information to the device is a process similar to receiving it, except you
use the standard write function instead of read. It is important to remember
that the data used in the write call has to be a struct input_event.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l8.html

A simple example of writing data is shown in Listing 9. This example turns the
Caps Lock LED on, waits 200 milliseconds and then turns the Caps Lock LED off.
It then turns the Num Lock LED on, waits 200 milliseconds, and then turns the
Num Lock LED off. The cycle then repeats (in an infinite busy loop), so you see
alternate flashing of the two keyboard LEDs.

Listing 9. Sample Data Write Function

By now it should be fairly clear that you receive events only when something
changes—a key is pressed or released, the mouse is moved and so on. For
some applications, you need to be able to determine what the global state of
the device is. For example, a program that manages keyboards may need to
determine which LEDs are currently lit and which keys are currently depressed
on the keyboard, even though some of the keys may have been depressed
before the application started.

The EVIOCGKEY ioctl is used to determine the global key and button state for a
device. An example is shown in Listing 10. This ioctl is similar to the
EVIOCGBIT(...,EV_KEY,...) function in some ways; instead of setting a bit in the bit
array for each key or button that the device can send, EVIOCGKEY sets a bit in
the bit array for each key or button that is depressed.

Listing 10. Determining a Device's Global Key and Button State

The EVIOCGLED and EVIOCGSND functions are analogous to EVIOCGKEY, except
that they return which LEDs are currently lit and sounds that are currently
turned on, respectively. An example of how you would use EVIOCGLED is
shown in Listing 11. Again, each bit is interpreted in the same way as the bits in
the bit array are filled in by EVIOCGBIT.

Listing 11. Using EVIOCGLED

You can determine the repeat rate settings for a keyboard using the
EVIOCGREP ioctl. An example is shown in Listing 12, with two elements to the
array. The first element specifies the delay before the keyboard starts
repeating, and the second element specifies the delay between subsequent
repeats. So if you hold down a key, you'll get one character straight away, a
second character rep[0] milliseconds later, a third character rep[1] milliseconds
after the second character and another character every rep[1] milliseconds
thereafter, until you release the key.

Listing 12. Checking the Repeat Rate Settings

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l9.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l10.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l11.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l12.html

You also can set the key repeat rate using EVIOCSREP. This uses the same two-
element array that you'd use to get the settings, as shown in Listing 13; it sets
the initial delay to 2.5 seconds and the repeat rate to 1 per second.

Listing 13. Setting the Repeat Rates

Some input drivers support variable mappings between the keys held down
(which are interpreted by the keyboard scan and reported as scancodes) and
the events sent to the input layer. You can determine what key is associated
with each scancode using the EVIOCGKEYCODE ioctl. An example is shown in
Listing 14, which loops over the first 100 scancodes. The value of the scancode
(input to the function) is the first element in the integer array, and the resulting
input event key number (keycode) is the second element in the array. You can
also modify the mapping, using the EVIOCSKEYCODE ioctl. An example is shown
in Listing 15; this ioctl maps my M key to always produce a letter N. Be aware
that keycode ioctl functions may not work on every keyboard—that USB
keyboard is an example of a driver that does not support variable mappings.

Listing 14. Looping over Scancodes

Listing 15. Mapping Keys

The EVIOCGABS function also provides state information. Instead of filling in a
bit array that represents the global state of boolean values, however, it
provides a struct input_absinfo (see Listing 16) for one absolute axis. If you
want the global state for a device, you have to call the function for each axis
present on the device. An example is shown in Listing 17. The elements in the
array are signed 32-bit quantities, and you can safely treat them as equivalent
to int32_t. The first element shows the current value of the axis, the second and
third elements show the current limits of the axis, the fourth element shows
the size of the “flat” section (if any) of the response and the last element shows
the size of the error that may be present.

Listing 16. input_absinfo for an Absolute Axis

Listing 17. Checking Globabl State by Axis

Force Feedback

Three additional ioctl functions may be used for controlling force-feedback
devices: EVIOCSFF, EVIOCRMFF and EVIOCGEFFECT. These functions currently
send a force-feedback effect, remove a force-feedback effect and determine
how many simultaneous effects can be used, respectively. Because the force-
feedback support is still emerging and substantial work remains to be done, it
is a little premature to fully document the API. The web sites listed in the

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l13.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l14.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l15.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l16.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6429l17.html

Resources section of this article may have updated information by the time you
read this.

Resources

email: bhards@bigpond.net.au

Brad Hards is the technical director for Sigma Bravo, a small professional
services company in Canberra, Australia. In addition to Linux, his technical
focus includes aircraft system integration and certification, GPS and electronic
warfare. Comments on this article may be sent to bradh@frogmouth.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6429s1.html
mailto:bhards@bigpond.net.au
mailto:bradh@frogmouth.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Unicode

Reuven M. Lerner

Issue #107, March 2003

Unicode is necessary for international web development but poses a few
pitfalls.

Growing up in the northeastern United States, I never had to use a language
other than English. I read in English, spoke in English, wrote in English and
conducted business in English. This was also true of the engineers who created
ASCII back in 1968, who made sure the 128 ASCII characters would suffice for
English-language documents. So long as you stuck with the standard set of
ASCII characters, you were guaranteed the ability to move files from one
computer to another without having to worry about them getting garbled.

ASCII was fine in its day, but people who spoke French, Spanish and other
Western European languages quickly discovered that it was insufficient for their
needs. After all, people who write in these languages on a computer want to
use the correct accent marks. So over the course of time, the 7-bit ASCII code
became the 8-bit extended ASCII code, including a number of special letters
and symbols necessary for displaying Western European text.

But because extended ASCII was never declared a standard, a number of
different, incompatible extensions to the base ASCII code became widespread.
Windows had its own extensions, as did the Macintosh and NeXTSTEP
operating systems. So although you could write a document in French using
Windows, you would need to translate it when moving it to the Macintosh.
Otherwise, the bytes would be interpreted on the receiving machine incorrectly,
turning your otherwise superb French screenplay into something more akin to
French toast.

International standards finally prevailed, at least somewhat, with a standard
known formally as ISO-8859-1 and informally as Latin-1. Computer
manufacturers could then exchange Western European documents without
having to worry about things becoming garbled. Of course, this meant we were

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

using all eight bits of each character's byte, doubling the number of available
characters from 128 to 256.

However, this didn't solve all of the problems. For example, Hebrew speakers
have their own standard, ISO-8859-8, which is identical to Latin-1 for characters
0-127 and quite different from 128-256. A document written in Hebrew but
displayed on a computer using Latin-1 will look like a letter substitution puzzle
using letters from the wrong alphabet.

Practically speaking, this means you cannot write a document that contains
English, Hebrew and French using the ISO-8859 series of standards. And
indeed, this makes sense given the fact that we have only 256 characters to
play with in a single 8-bit byte. But it raises some serious questions and issues
for those of us who work with more than two languages.

Things get especially hairy if you want to display a page in English, French,
Hebrew and Chinese. After all, there are tens of thousands of ideographs in
Chinese, not to mention Japanese and other languages.

Enter Unicode, the ASCII table for the next century. Like ASCII, Unicode assigns
a number to each letter, number and symbol. Unlike ASCII, Unicode contains
enough space for every written symbol ever created by humans. This means
that a Unicode document can contain any number of characters from any
number of languages, without having to worry about clashes between them.
Unicode also handles a number of issues that ASCII never dreamed about,
including combining characters (for accents and other diacritical marks) and
directional issues (for languages that do not read from left to right).

Unicode has been around for about a decade, but it is only now becoming
popular and supported for web applications. This month, we take a look at
Unicode as it affects web developers. What should you consider? What do you
need to worry about? And, how can you get around the problems associated
with Unicode?

Introduction to Unicode

Unicode, like ASCII, assigns a unique number to each letter, number, symbol
and control character. As indicated above, though, Unicode extends through
each of the symbols and character sets ever created. So using Unicode, you can
create a document that uses English, Russian, Japanese and Arabic, in which
each character is clearly distinct from the others.

How do we turn these unique numbers—known as code points in the Unicode
universe—into bits and bytes? The encoding for ASCII is very straightforward;
with only 127 characters (or 256, if you include the various extensions), each

ASCII character will fit into a single byte. And indeed, C programmers know that
the char data type is an 8-bit integer.

The most obvious solution is to assign a fixed multibyte encoding for our
Unicode characters. And indeed, UCS-2 is such an encoding, using two bytes to
describe all of the basic 65,536 Unicode characters. (There are some extended
characters that require additional bytes, but we won't go into that.) UCS-2
assigns a single 2-byte code to each of these characters. Documents are thus
equally long regardless of the language in which they are written, and
programs can easily calculate the number of bytes they need by doubling the
number of characters. Microsoft's modern operating systems use UCS-2, as you
might have noticed if you exchange any documents with users of those
systems.

But there is a basic problem with UCS-2, namely its incompatibility with ASCII. If
you have 100,000 documents written in ASCII, you will have to translate them
into UCS-2 in order to read them accurately. Given that most modern programs
work with ASCII, this lack of backward compatibility is quite a problem.

Enter UTF-8, which is a variable-length Unicode encoding. Just as Roman and
Arabic numerals represent the same numbers differently, UTF-8 and UCS-2 are
simply different encodings for the same underlying Unicode character set. But
whereas every UCS-2 character requires two bytes, a UTF-8 character might
require anywhere from one to four bytes. One-byte UTF-8 characters are the
same as in ASCII, which means that a legal ASCII document is also a legal UTF-8
document. However, Latin-1 and other 8-bit character sets are incompatible
with UTF-8; existing Latin-1 documents will not only need to be transformed but
could potentially double in size.

UTF-8 is the preferred encoding on UNIX and Linux systems, as well as in most
of the standards and open-source software that I tend to use. Perl, Python, Tcl
and Java all encode strings in UTF-8. PostgreSQL has supported UTF-8 for years,
and Unicode support has apparently been added to MySQL 4.1, which will be
released in alpha in the coming months.

Adding Unicode support to an existing system is a Herculean task for which the
various developers should be given great praise. Not only do developers need
to add support for multibyte characters, but databases and languages also
need to support regular expressions and sorting operators, neither of which is
easy to do.

Unicode and HTTP

Now that we have gotten the basics out of the way, let's consider how Unicode
documents are transferred across the Web. The basic problem is this: when

your browser receives a document, how does it know if it should interpret the
bytes as Latin-1, Big-5 Chinese or UTF-8?

The answer lies in the Content-type HTTP header. Every time an HTTP server
sends a document to a browser, it identifies the type of content it is sending
using a MIME-style designation, such as text/html, image/png or application/
msword. If you receive a JPEG image (image/jpeg), there is only one way to
represent the image. But if you receive an HTML document (text/html), the
Content-type header must indicate the character set and/or encoding that is
being used. We do this by adding a charset= designation to the end of the
header, separating the type from the charset. For example:

Content-type: text/html; charset=utf-8

Purists rightly say that UTF-8 is an encoding and not a character set.
Unfortunately, it's too late to do anything about this. This is similar to the fact
that the word “referrer” is misspelled in the HTTP specification as “referer”;
everyone knows that it's wrong but is afraid to break existing software.

If no Content-type is specified, it is assumed to be Latin-1. Moreover, if no
Content-type is specified, individual documents can set (or override) the value
within a metatag. Metatags cannot override an explicit setting of the character
set, however.

As you begin to work with different encodings, you will undoubtedly discover
an HTTP server that has not been configured correctly and that is announcing
the wrong character set in the Content-type header. An easy way to check this
is to use Perl's LWP (library for web programming), which includes a number of
useful command-line programs for web developers, for example:

$ HEAD http://yad2yad.huji.ac.il/

Typing the above on my Linux box returns the HTTP response headers from the
named site:

200 OK
Cache-Control: max-age=0
Connection: close
Date: Tue, 10 Dec 2002 08:38:37 GMT
Server: AOLserver/3.3.1+ad13
Content-Type: text/html; charset=utf-8

As you can see, the Content-type header is declaring the document to be in
UTF-8.

Mozilla and other modern browsers allow the user to override the explicitly
stated encoding. Although this should not normally be necessary for end users,
I often find this functionality to be useful when developing a site.

Unicode and HTML

Although it's nice to know we can transfer UTF-8 documents via HTTP, we first
need some UTF-8 documents to send. Given that ASCII documents are all UTF-8
documents as well, it's easy to create valid UTF-8 documents, so long as they
contain only ASCII characters. But what happens if you want to create HTML
pages that contain Hebrew or Greek? Then things start to get interesting and
difficult.

There are basically two ways to include Unicode characters in an HTML
document. The first is to type the characters themselves using an editor that
can work with UTF-8. For example, GNU Emacs allows me to enter text using a
variety of keyboard options and then save my document in the encoding of my
choice, including UTF-8. If I try to save a Chinese document in the Latin-1
encoding, Emacs will refuse to comply, warning me that the document contains
characters that do not exist in Latin-1. Unfortunately, for people like me who
want to use Hebrew, Emacs doesn't yet handle right-to-left input.

A better option, and one which is increasingly impressive all of the time, is
Yudit, an open-source UTF-8-compliant editor that handles many different
languages and directions. It can take a while to learn to use Yudit, but it does
work. Yudit, like Emacs, allows you to enter any character you want, even if your
operating system or keyboard does not directly support all of the desired
languages.

Both Emacs and Yudit are good options if you are working on Linux, if you are
willing to tinker a bit, and if you don't mind writing your HTML by hand. But
nearly all of the graphic designers I know work on other platforms, and getting
them to work with HTML editors that use UTF-8 has been rather difficult.

Luckily, Mozilla comes with not only a web browser but a full-fledged HTML
editor as well. As you might expect, Mozilla's composer module is a bit rough
around the edges but handles most tasks just fine.

Another option is to use HTML entities. The best-known entities are <, >
and & which make it possible to insert the <, > and & symbols into an
HTML document without having to worry that they will be interpreted as tags.

Modern browsers not only understand entities such as © (the copyright
symbol) but also include the full list of Unicode characters. Thus, you can refer
to Unicode characters by inserting &#XXXX; in your document, entering the
character's decimal code instead of the XXXX. For example, the following HTML
document displays my name in Hebrew, using Unicode entities:

<html>
 <head><title>Reuven's name</title></head>
 <body><p>ראובן</p>
 </body>
</html>

Creating the above document does not require a Unicode-compliant editor, and
it will render fine in any modern browser, regardless of the Content-type that
was declared in the HTTP response headers. However, editing a file that uses
entities in this way is tedious and difficult at best. Unfortunately, the save-as-
HTML feature in the international editions of Microsoft Word uses this
extensively, which makes it easy for Word users to create Unicode-compliant
documents but difficult for people to edit them later.

Pitfalls

As I indicated earlier, Unicode is a complex standard, and it has taken some
time for different languages and technologies to support it. For example, Perl
5.6.x used Unicode internally, but input and output operations couldn't easily
use it, which made such support basically useless. Perl 5.8 by contrast has
excellent Unicode support, allowing developers to write regular expressions
that depend on Unicode properties.

There are still some problems, however. A major problem that developers have
to deal with is the issue of input encoding vs. storage encoding, such as when
your terminal might use Latin-1 but the back end might use UTF-8. This sort of
arrangement means you can continue to use your old (non-Unicode) terminal
program and fonts but connect to and use your Unicode-compliant back-end
program.

Various implementations also have some holes, which might not be obvious
when you first start to work on a project. For example, I recently worked on a
J2EE project that used PostgreSQL on its back end and stored all of the
characters in Unicode. Everything was fine until we decided to compare the
user's input string with text in the database in a case-insensitive fashion.
Unfortunately, the PostgreSQL function we used doesn't handle case
insensitivity correctly for Unicode strings. We found a workaround in the end,
but it was both embarrassing and frustrating to encounter this.

Collating, or sorting, is also a difficult issue—one that has bitten me on a
number of occasions. Unicode defines a character set, but it does not indicate
in which order the characters in that set should be sorted. Until recently, for
example, “ch” was sorted as its own separate letter in Spanish-speaking
countries; this was not true for speakers of English, German and French. The
sort order thus depends not only on the character set, but on the locale in
which the character set is being applied. You may need to experiment with the

LANG and LC_ALL environment variables (among others) to get things to work
the way you expect.

Conclusion

Unicode is clearly the way of the future; most operating systems now support it
to a certain degree, and it is becoming an entrenched standard in the computer
world. Unfortunately, Unicode requires unlearning the old practice of equating
characters and bytes and handling a great deal of new complexities and
problems.

If you only need to use a single language on your web site, then consider
yourself lucky. But if you want to use even a single non-ASCII character, you will
soon find yourself swimming in the world of Unicode. It's worth learning about
this technology sooner rather than later, given that it is slowly but surely
making its way into nearly every open-source system and standard.

Resources

Reuven M. Lerner (reuven@lerner.co.il) is a consultant specializing in web/
database technologies. His first book, Core Perl, was published by Prentice Hall
in January 2002. His next book, about open-source web/development
environments, will be published by Apress in late 2003. Reuven lives with his
wife and daughters in Modi'in, Israel.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6504s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Chatting Up the Chef

Marcel Gagné

Issue #107, March 2003

Introducing two chat servers, geektalkd and Shadowlands Forum, and a fine
Jabber instant-messaging client.

Everything looks wonderful, François. Candles on every table, wineglasses,
workstations, DSL feeds—we are ready. Tonight's menu is a toast, if you will, to
this issue's theme of On-line Fora. Every item is designed to bring people closer
together, even if in a virtual fashion, non? Perhaps we should serve a somewhat
romantic wine; the 1997 Alsatian Gewurztraminer sounds right for this evening.
You don't agree, mon ami? Well, perhaps romantic is a bit much, but consider
this, human interaction, even on-line, is all about communication, and
communication implies a certain closeness—even if you don't like the person,
non?

Quoi? Well, it is all very simple, François. The whole idea of people
communicating with other people is at the heart of the Internet's existence—
whether it is a web page trying to sell a product or a colleague sending an e-
mail. When we cook with Linux, we can take advantage of those communication
possibilities in many different ways.

Ah, but our guests have arrived! Bonsoir, mes amis. Welcome to Chez Marcel,
home of fine Linux fare and most excellent wine, non? Your tables are ready.
Please, be seated. My faithful waiter will serve the wine.

On-line fora exist in a number of incarnations, mes amis, from web portals, to
intranets, to chat rooms and even instant messaging. The tools at our disposal
provide us with the means of joining in existing discussions or hosting them.
Your Linux system is the perfect platform for hosting a server, and doing so
need not be complicated. Witness this simple little package called geektalkd,
written by Michael Plump who credits David Elkins with a lot of the bug fixes.
geektalkd is a simple chat server written entirely in Perl. Its simple, open-source

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

nature, makes it easy to extend, modify or simply appreciate. It supports
channels, private discussions and more.

To install and run geektalkd, you will need to have the Net::Ident Perl module
installed. The easiest way to do this is by using Perl's CPAN mode. You can do
the entire installation on the command line by typing:

perl -MCPAN -e "install Net::Ident"

If this is the first time you have installed something using the Perl CPAN shell,
you'll have to go through a little question-and answer-session. For the most
part, you can accept everything the system suggests with a couple of
exceptions, notably those having to do with selecting a mirror. Depending on
whether this was your first time or you whether you have been around the
CPAN block before, this might take a minute to several minutes.

When this is done, extract and build geektalkd:

tar -xzvf geektalkd-1.23.tar.gz
cd geektalkd-1.23
perl install

That's it. Running the server is as simple as typing the command itself, which
will then fork into the background. You might want to consider adding the -l
option and specifying a log file, or adding the -p to specify another port
number. By default, geektalkd runs on port 41000:

/usr/local/sbin/geektalkd -l /var/log/gtd_log -p 41001

With the server running, all a client has to do is telnet to the port.
telnet your_site.dom 41000

The server then responds with a connect message. Type /help for a list of
commands.

Another candidate for an extremely easy chat server is the Shadowlands
Forum. Written by Jeremy Monin, Dan Chin and Matt Lochansky, this software is
a highly functional chat room with some excellent (and occasionally just plain
fun) features. For instance, users can set options such as away messages, idle
timeouts, create macros, enable mail checks (for local users) and much more.
Administrators can set defaults for the whole room, decide who participates
and who doesn't, set topics and so on. To try out Shadowlands Forum, pick up
your copy at www.shadowlands.org/forum, then extract the software into a
local directory:

tar -xzvf slforum-1.9.6.1.tar.gz
cd slforum-1.9.6

http://www.shadowlands.org/forum

Next, you'll want to edit slfprefs.h before continuing. This contains site-specific
configurations, such as slforum's home directory and where its files live. If your
system uses shadow passwords, you will need to uncomment the #define
USE_SHADOW line (the default uses PAM). You also can edit system messages
here, or you could, of course, accept the defaults. When you are happy, compile
the program like this:

make -f Makefile-linux

There is no make install. When the compile is done, simply copy the slforum
executable to an appropriate directory. If you are using PAM, you also need to
copy slforum.pam to the PAM directory (cp slforum.pam /etc/pam.d/slforum). It
is now time to run your new chat room:

./slforum -ag marcel +aa /path_to/chat.log

The -ag option identifies the group ID of the admin group to the server.
Meanwhile, the +aa option turns on the guest auto-accept feature. As for the
log file at the end of the command, this can be anything you like. Use -h to see
all the options. To use the forum, use any telnet client and connect on port
7777:

telnet your_site.dom 7777

From there, you can either log in as guest or as a member of the admin group.
Guests will be asked for their handle (or name) and admins will have to enter a
password. Once you are logged in, you can get a list of available commands by
typing !help. Shadowlands Forum is loaded with features. It even comes with a
magic 8 ball to help answer all of life's complex questions.

marcel> !8 ball Should I serve Chenin Blanc with
 on-line fora?
FORUM: The 8 ball has advised marcel:
FORUM: To Answer Would Dishonor the 8 ball

Well, mes amis, perhaps this 8 ball is not very useful after all.

The final item on tonight's menu is an instant-messaging client. What, you
might ask, is the difference between the chat servers already featured and
instant messaging? The two seem similar indeed. The difference is that every
other chat tool we have worked with requires that you connect to a central
location. The only way to find out whether another person is on, is to connect.

Instant-messaging protocols like Jabber (www.jabber.org) make it possible to
chat in real time with a friend or relative (colloquially known in IM parlance as a
buddy) in the same way as our previous examples. The difference is that IM
clients communicate with each other, letting you know when your buddy comes
on-line. Jabber, by the way, is an open, nonproprietary, XML-based instant-
messaging protocol you should consider using as an alternative to the other

http://www.jabber.org

services. In fact, Jabber's open nature means that you can run your own server,
an ideal situation for private intranets.

It is entirely likely that you already have a fine Jabber IM client loaded on your
system. It is called Gaim. It was originally written by Mark Spencer and is now
maintained by Rob Flynn (with the help of the usual band of dedicated coders
and patch writers). We will be using Gaim to set up a Jabber account, but Gaim
also can talk to AOL's instant-messaging client, and Yahoo's client, and
Microsoft's MSN client and others as well. This multiprotocol support is
achieved through the use of plugins, making Gaim one of the most flexible
instant-messaging clients around.

If you don't already have Gaim on your system, pick up the latest source at
gaim.sourceforge.net. Building the package is a matter of executing the old
extract and build five-step:

tar -xzvf gaim-0.59.6.tar.gz
cd gaim-0.59.6
./configure
make
su -c "make install"

Start Gaim, either from your menu or by typing gaim & at the command line,
and the main Gaim window will appear (Figure 1).

Figure 1. Starting Gaim for the First Time

The first time you start up Gaim, you'll get a simple window with text fields for
Screen Name and Password. The Screen Name field will have the words <New
User> entered letting you know you don't have any accounts set up. Obviously,

http://gaim.sourceforge.net

mes amis, before we start using instant messaging through Gaim, we will need
at least one account, non?

Look below the text fields and you'll see six buttons labeled Quit, Accounts,
Signon, About, Options and Plugins. By default, Gaim is ready to accept an ICQ
account (if you already have one). In order to use Jabber as one of your
protocols, you may need to load its plugin, which isn't activated by default. This
is very easy to do. Click the Plugins button.

The Gaim Plugins window appears. Click on Load, then select a protocol from
the pop-up list. In the case of Jabber, you would click on libjabber.so and click
OK. You would follow the same steps to load the Yahoo protocol (libyahoo.so)
or the MSN chat protocol (libmsn.so). Once you have loaded the Jabber plugin
(or any other that took your fancy), click Close.

When the plugin window disappears, click the Accounts button. The Account
Editor window will appear with nothing in it.

Click Add and the Modify Account window will appear. Halfway down that
window, you should see a drop-down list labeled Protocol. By default, it says
AIM/ICQ. Click on it, select Jabber, and watch as the window changes to reflect
the requirements of setting up a Jabber account.

Figure 2. Creating or Modifying a Jabber Account

Enter your Screenname, Password and Alias, then click on the Register with
server radio button. If you would like your Gaim client to log in to Jabber
automatically every time you start up the client, click on the Auto-Login radio

button as well. When you are happy with your changes, click OK. Your Account
Editor window will show your new account (Figure 3).

Figure 3. Adding or editing your accounts is easy.

You can sign on here either by clicking the Sign On/Off button or by clicking
Close and signing on from the main Gaim window. With your first time in, you'll
get a welcome message from the Jabber.org server. You can close this window
or visit the site (as indicated in the message) for additional information.

Now that you have your very own Jabber instant-messaging account, you need
people to talk to. There are on-line chats you can join by clicking File on the
menubar and selecting Join A Chat. You also can use the keyboard shortcut Ctrl-
C instead. Add friends to your Buddy List by selecting Add A Buddy from the
menu.

After you have added buddies to the list, they will get messages letting them
know that you want to add them. When they see the pop up, they will click
Accept, at which point you can begin conversing.

This accepting of buddies has to happen at both sides of the connection. They
accept you, after which you accept them. Think of it as saying “I do”, but to a
more casual, dare I say, virtual, relationship. François, all this closeness is calling
for Champagne, would you not agree? Perhaps we should share a bottle with
our guests before they leave, non? Vite, François! To the wine cellar. The 1988
Brut Champagne Rare, please.

While François is off to get the Champagne, we'll finish up our examination of
Gaim. Once all this accepting has taken place, your buddy will appear on your
buddy list. An icon beside the name on your buddy list will indicate whether
your buddy is on-line. If so, double-click on the name and start chatting. It is
that easy.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6489f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6489f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6489f3.large.jpg

Figure 4. Talk all you want, instantly.

Gaim is highly configurable as well. Click Tools and Preferences for a list of
options. One I particularly like (under Conversations) is the option to have all
conversations tabbed in one chat window. If you find yourself talking to a
number of people, this is one you will definitely want to set.

Ah, François, welcome back, mon ami. Please pour a glass for our friends. I fear
that closing time is upon us again. Until next month, mes amis, let us all drink
to one another's health. A votre santé! Bon appétit!

Resources

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley (and is currently at work on his next book). He can be reached via e-mail
at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6489s1.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

rsync, Part I

Mick Bauer

Issue #107, March 2003

rsync makes efficient use of the network by only transferring the parts of files
that are different from one host to the next. Here's how to use it securely.

Andrew Tridgell's rsync is a useful file-transfer tool, one that has no encryption
support of its own but is easily “wrapped” (tunneled) by encryption tools such
as SSH and Stunnel. What differentiates rsync (which, like scp, is based on rcp)
is that it has the ability to perform differential downloads and uploads of files.

For example, if you wish to update your local copy of a 10MB file, and the
newer version on the remote server differs in only three places totaling 150KB,
rsync will automatically download only the differing 150KB (give or take a few
KB) rather than the entire file. This functionality is provided by the rsync
algorithm, invented by Andrew Tridgell and Paul Mackerras, which rapidly
creates and compares rolling checksums of both files and thus determines
which parts of the new file to download and add/replace on the old one.

Because this is a much more efficient use of the network, rsync is especially
useful over slow network connections. It does not, however, have any
performance advantage over rcp in copying files that are completely new to
one side or the other of the transaction. By definition, differential copying
requires that there be two files to compare.

In summary, rsync is by far the most intelligent file-transfer utility in common
use, one that is both amenable to encrypted sessions and worth taking the
trouble to figure out how. Using rsync securely is the focus of the remainder of
this article.

rsync supports a long list of options, most of them relevant to specific aspects
of maintaining software archives, mirrors and backups. Only those options
directly relevant to security will be covered in depth here, but the rsync(8) man
page will tell you anything you need to know about these other features.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Getting, Compiling and Installing rsync

Because Andrew Tridgell, rsync's original lead developer, is also one of the
prime figures in the Samba Project, rsync's home page is part of the Samba
web site, rsync.samba.org. That, of course, is the definitive source of all things
rsync. The resources page, rsync.samba.org/resources.html, has links to some
excellent off-site rsync documentation.

The latest rsync source code is available at rsync.samba.org/ftp/rsync, with
binary packages for Debian, LinuxPPC and Red Hat Linux at rsync.samba.org/
ftp/rsync/binaries. rsync is already considered a standard Linux tool and
therefore is included in all popular Linux distributions; you probably needn't
look further than the Linux installation CD-ROMs to find an rsync package for
your system.

However, there are security bugs in the zlib implementation included in rsync
prior to rsync v.2.5.4. These bugs are applicable regardless of the version of
your system's shared zlib libraries. There is also an annoying bug in v2.5.4 itself,
which causes rsync sometimes to copy whole files needlessly. I therefore
recommend you run no version earlier than rsync v.2.5.5.

Happily, compiling rsync from source is fast and easy. Simply unzip and untar
the archive, change your working directory to the top-level directory of the
source code, type ./configure, and if this script finishes without errors, type
make && make install.

Running rsync over SSH

Once rsync is installed, you can use it several ways. The first and most basic is
to use rcp as the transport, which requires any host to which you connect to
have the shell service enabled (i.e., in.rshd) in inetd.conf. Don't do this! The
reason the Secure Shell was invented was because of a complete lack of
support for strong authentication in the “r” services (rcp, rsh and rlogin), which
led to their being used as entry points by many successful intruders over the
years.

Therefore, I won't describe how to use rsync with rcp as its transport. However,
you may wish to use this method between hosts on a trusted network; if so,
ample information is available in both rsync's and in.rshd's respective man
pages.

rsync Works Two Ways

A much better way to use rsync than the rcp method is by specifying the Secure
Shell as the transport. This requires that the remote host be running sshd and

http://rsync.samba.org
http://rsync.samba.org/resources.html
http://rsync.samba.org/ftp/rsync
http://rsync.samba.org/ftp/rsync/binaries
http://rsync.samba.org/ftp/rsync/binaries
https://secure2.linuxjournal.com/ljarchive/LJ/107/6475s1.html

that the rsync command is present (and in the default paths) of both hosts. If
you haven't set up sshd yet, do that first.

Suppose you have two hosts, near and far, and you wish to copy the local file
thegoods.tgz to far's /home/near.backup directory, which you think may
already contain an older version of thegoods.tgz. Assuming your user name,
yodeldiva, exists on both systems, the transaction might look like this:

yodeldiva@near:~> rsync -vv -e ssh \
./thegoods.tgz far:~

Let's dissect the command line. rsync has only one binary executable, rsync,
which is used both as the client command and, optionally, as a dæmon. In this
example, it's present on both near and far, but it runs on a dæmon on neither;
sshd is acting as the listening dæmon on far.

The first rsync option in the above example is -vv, which is the nearly universal
UNIX shorthand for “very verbose”. It's optional, but instructive. The second
option is -e, with which you can specify an alternative to rsync's default remote-
copy program rcp. Because rcp is the default, and because rcp and SSH are the
only supported options, -e is used to specify SSH in practice.

Perhaps surprisingly, -e scp will not work, because prior to copying any data,
rsync needs to pass a remote rsync command via SSH to generate and return
rolling checksums on the remote file. In other words, rsync needs the full
functionality of the ssh command to do its thing, so specify this rather than scp
if you use the -e option.

After the options come rsync's actionable arguments, the local and remote
files. The syntax for these is very similar to rcp's and scp's. If you immediately
precede either filename with a colon, rsync will interpret the string preceding
the colon as a remote host's name. If the user name you wish to use on the
remote system is different from your local user name, you can specify it by
immediately preceding the hostname with an @ sign and preceding that with
your remote user name. In other words, the full rsync syntax for filenames is
the following:

[[username@]hostname:]/path/to/filename

There must be at least two filenames. The right-most must be the destination
file or path, and the others must be source files. Only one of these two may be
remote, but both may be local (colon-less), which lets you perform local
differential file copying—this is useful if, for example, you need to back up files
from one local disk or partition to another.

The source file specified is ./thegoods.tgz, an ordinary local file path, and the
destination is far:~, which translates to “my home directory on the server far”. If
your user name on far is different from your local user name, say
yodelerwannabe rather than yodeldiva, use the destination
yodelerwannabe@far:~.

Setting Up an rsync Server

Using rsync with SSH is the easiest way to use rsync securely with authenticated
users, in a way that both requires and protects the use of real users' accounts.
But as I mentioned earlier in the “SFTP and SSH” section [of the book, see
Sidebar], SSH doesn't lend itself easily to anonymous access. What if you want
to set up a public file server that supports rsync-optimized file transfers?

This is quite easy to do. Create a simple /etc/rsyncd.conf file, and run rsync with
the --daemon flag (i.e., rsync --daemon). The devil, however, is in the details.
You should configure /etc/rsyncd.conf very carefully if your server will be
connected to the Internet or any other untrusted network. Let's discuss how.

rsyncd.conf has a simple syntax; global options are listed at the beginning
without indentation. Modules, which are groups of options specific to a
particular filesystem path, are indicated by a square-bracketed module name
followed by indented options.

Option lines each consist of the name of the option, an equal sign and one or
more values. If the option is boolean, allowable values are yes or no (don't be
misled by the rsyncd.conf(5) man page, which in some cases refers to true and
false). If the option accepts multiple values, these should be comma-space
delimited, for example, option1, option2.

Listing 1 is part of a sample rsyncd.conf file that illustrates some options
particularly useful for tightening security. Although I created it for this purpose,
it's a real configuration file and syntactically complete. Let's dissect it.

A Sample rsyncd.conf File

As advertised, the global options are listed at the top. The first option set also
happens to be the only global-only option: syslog facility, motd file, log file, pid
file and socket options may be used only as global settings, not in module
settings. Of these, only syslog facility has direct security ramifications. Like the
ProFTPD directive SyslogFacility, rsync's syslog facility can be used to specify
which syslog facility rsync should log to if you don't want it to use daemon, its
default.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6475l1.html

For detailed descriptions of the other global-only options, see the
rsyncd.conf(5) man page; I won't cover them here, as they don't directly affect
system security, and their default settings are fine for most situations, anyhow.

All other allowable rsyncd.conf options can be used as global options, in
modules or both. If an option appears in both the global section and in a
module, the module setting overrides the global setting for transactions
involving that module. In general, global options replace default values, and
module-specific options override both default and global options.

The second group of options falls into the category of module-specific options.

use chroot = yes: if use chroot is set to yes, rsync will chroot itself to the
module's path prior to any file transfer, preventing or at least hindering certain
types of abuses and attacks. This has the trade-off of requiring that rsync --
daemon be started by root, but by also setting the uid and gid options, you can
minimize the amount of the time rsync uses its root privileges. The default
setting is yes.

uid = nobody: the uid option lets you specify with which user's privileges rsync
should operate during file transfers, and it therefore affects which permissions
will be applicable when rsync attempts to read or write a file on a client's
behalf. You may specify either a user name or a numeric user ID. The default is
-2, which is nobody on many systems, but not on mine, which is why uid is
defined explicitly.

gid = nobody: the gid option lets you specify with which group's privileges
rsync should operate during file transfers, and it therefore affects (along with
uid) which permissions apply when rsync attempts to read or write a file on a
client's behalf. You may specify either a user name or a numeric user ID; the
default is -2 (nobody on many systems).

max connections = 20: this limits the number of concurrent connections to a
given module (not the total for all modules, even if set globally). If specified
globally, this value will be applied to each module that doesn't contain its own
max connections setting. The default value is zero, which places no limit on
concurrent connections. I do not recommend leaving it at zero, as this makes
Denial-of-Service (DoS) attacks easier.

timeout = 600: the timeout also defaults to zero, which in this case also means
“no limit”. Since timeout controls how long (in seconds) rsync will wait for idle
transactions to become active again, this also represents a DoS exposure and
should likewise be set globally (and per module, when a given module needs a
different value for some reason).

read only = yes: the last option defined globally is read-only, which specifies
that the module in question is read-only, i.e., that no files or directories may be
uploaded to the specified directory, only downloaded. The default value is yes.

The third group of options defines the module [public]. These, as you can see,
are indented. When rsync parses rsyncd.conf downward, it considers each
option below a module name to belong to that module until it reaches either
another square-bracketed module name or the end of the file. Let's examine
each of the module [public]'s options, one at a time.

[public]: this is the name of the module. No arguments or other modifiers
belong here: just the name you wish to call this module, in this case public.

path = /home/public_rsync: the path option is mandatory for each
module, as it defines which directory the module will allow files to be read from
or written to. If you set the global option use_chroot to yes, this is the directory
rsync will chroot to prior to any file transfer.

comment = Nobody home but us tarballs: this string will be displayed
whenever a client requests a list of available modules. By default there is no
comment.

hosts allow = near.echo-echo-echo.org, 10.18.3.12 and hosts deny

= *.echo-echo-echo.org, 10.16.3.0/24: you may, if you wish, use
the hosts allow and hosts deny options to define Access Control Lists (ACLs).
Each accepts a comma-delimited list of FQDNs or IP addresses from which you
wish to explicitly allow or deny connections. By default, neither option is set,
which is equivalent to “allow all”. If you specify an FQDN, which may contain the
wildcard *, rsync will attempt to reverse-resolve all connecting clients' IP
addresses to names prior to matching them against the ACL.

rsync's precise interpretation of each of these options depends on whether the
other is present. If only hosts allow is specified, then any client whose IP or
name matches will be allowed to connect, and all others will be denied. If only
hosts deny is specified, then any client whose IP or name matches will be
denied, and all others will be allowed to connect.

If, however, both hosts allow and hosts deny are present, hosts allow will be
parsed first, and if the client's IP or name matches, the transaction will be
passed.

If the IP or name in question didn't match hosts allow, then hosts deny will be
parsed, and if the client matches there, the transaction will be dropped.

If the client's IP or name matches neither, it will be allowed.

In this example, both options are set. They would be interpreted as follows:

• Requests from 10.18.3.12 will be allowed, but requests from any other IP
in the range 10.16.3.1 through 10.16.3.254 will be denied.

• Requests from the host near.echo-echo-echo.org will be allowed, but
everything else from the echo-echo-echo.org domain will be rejected.
Everything else will be allowed.

ignore nonreadable = yes: any remote file for which the client's rsync process
does not have read permissions (see the uid and gid options) will not be
compared against the client's local copy thereof. This probably enhances
performance more significantly than security; as a means of access control, the
underlying file permissions are more important.

refuse options = checksum: the refuse options option tells the server-side
rsync process to ignore the specified options if specified by the client. Of rsync's
command-line options, only checksum has an obvious security ramification. It
tells rsync to calculate CPU-intensive MD5 checksums in addition to its normal
rolling checksums, so blocking this option reduces certain DoS opportunities.
Although the compress option has a similar exposure, you can use the dont
compress option to refuse it rather than the refuse options option.

dont compress = *: you can specify certain files and directories that should not
be compressed via the dont compress option. If you wish to reduce the chances
of compression being used in a DoS attempt, you also can specify that nothing
be compressed by using an asterisk (*), as in our example.

This simple example should get you started offering files for download by
rsync. Next month, we'll cover setting up rsync modules (directories) at the
filesystem level to accept anonymous uploads and authenticate users.

Building Secure Servers with Linux

Mick Bauer (mick@visi.com) is a network security consultant for Upstream
Solutions, Inc., based in Minneapolis, Minnesota. He is the author of the O'Reilly
book Building Secure Servers with Linux, composer of the “Network
Engineering Polka” and a proud parent (of children).

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/107/6475s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6475s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6475s2.html
mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Original and Ultimate Communities

Doc Searls

Issue #107, March 2003

Will the Web ever support on-line communities like the best of what we had in
the old days?

I am a pack rat; I save all kinds of stuff. But moving four times in two years has
cheapened the growing tons of archival printed matter I began putting in boxes
and storing away in my twenties. So lately I've been yielding to the urge to
purge my life of crap.

In my latest purge I emptied 40 boxes; about half of them were filled with
books going back to college days. Want a manual for QuickBooks 1.0? Netware
2.0? How about ones that compare WangNet, DECnet and OmniNet? All of
those went into recycling, along with about half a ton of paper in loose-leaf
binders.

But I kept one binder. It was full of printouts from on-line discussions. Some
were from the Compuserve Broadcast Professionals Forum (BPF), and some
were from a forum called The Buzz, which was run by my old friend, Denise
Caruso, on AOL. The Buzz and Denise were the only reasons I had AOL.

Both The BPF and the Buzz were communities in the deepest sense that word
can apply to a virtual space. The BPF was where disc jockeys, engineers,
program directors and music obsessives would get together to ask and answer
tough questions, help each other find better jobs and comment wisely on the
gradual decline of a business they all loved, however corporatized and
heartless it was becoming. The Buzz was a mix of techie and intellectual types
that hit its peak during the Gulf War.

The BPF was a collateral casualty of Compuserve's gradual suicide, completed
by its sale to AOL. The Buzz died faster than the BPF, mostly because nobody
could stand staying on AOL. Both, however, were doomed by the same design
flaw: everything posted scrolled to oblivion.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The main business model for both AOL and Compuserve back then was
metered use. Compuserve also charged customers to download files. No value
at all was placed on archiving what people said; that was up to the users. That
was why I printed out so many of those old postings.

The Net and the Web are natural and liberating environments for communities.
Nobody needs to depend on clueless and uncaring corporate entities. In fact,
clueful corporate entities can get together with free-range hackers to improve
everybody's environment. That's what's been happening with weblogging,
which has produced RSS, XML-RPC, SOAP and other handy standards.

Weblogs form communities in much the same way that people do. Follow the
links from Glenn Reynolds' Instapundit, and you'll find most are in agreement
with Glenn's libertarian/conservative political philosophy. Glenn is widely
considered the leading “warblogger”. Dave Winer, the prime mover behind the
acronyms in the last paragraph, is widely considered the leading “techblogger”.
There are blogs focused on photography, music, raising kids, women's issues,
you name it. What makes them radically different from any other kind of on-
line forum is they aren't contained by their categories.

Eric Olsen, whose main blog, TresProducers, is more or less in the warblogger
camp, also is a music producer who has organized a bunch of fellow bloggers at
Blogcritics.org. Group blogs and hot topics gather people the way cuisines
cause restaurants to gather certain kinds of customers, who are also customers
of other restaurants and fond of other cuisines.

Still, I think we're missing something we had in the best of those old on-line
forums, especially The Well. One of my life's regrets was that I never
participated in The Well, even though I went to the trouble of belonging to it. I
have similar feelings about Woodstock: I drove people up there, then turned
around and went home in the rain.

With all due respect to Slashdot, Kuro5hin and Advogato, I don't think there are
any Wells on the Web yet—including The Well itself, which still exists. I'm on
half a dozen e-mail lists that are excellent (I'd name them but I don't want to
burden them with more participants than they already have), and most of them
are also exposed on the Web. But I still don't think any of them meets The Well
standard.

However, I think it will happen because I think we're still early in the Net's
evolution. How will we know that Well-grade communities are happening big-
time on the Web? Here's my guess: they'll matter politically. They'll mobilize to
elect some people and prevent the election of others. They'll also bring down
bad companies and industries and raise others up.

Why politics? Why muscular market action? Because the Web is a public place;
it's the commons; it's where public communities gather; it's utterly
uncontained. Ultimately, our communities are going to keep it that way.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

“Roadcast Flag” Is MPAA's Latest Attack on Linux

Seth David Schoen

Issue #107, March 2003

Will the US government ban free device drivers for TV-capable hardware?

The Digital Millennium Copyright Act (DMCA) gave copyright holders powerful
new rights to control implementations of proprietary protocols and media
formats. Yet, it took a hands-off position toward non-proprietary formats. You
still are free under the DMCA to implement a system based on open standards
with the features of your choice.

But now, even this “no mandate” rule is under attack from proposals to
regulate the use of open standards. The best-known is the Consumer
Broadband and Digital Television Promotion Act (CBDTPA), introduced by Sen.
Ernest Hollings. CBDTPA goes beyond the DMCA and requires that any “digital
media device” must include “standard security technologies”.

The CBDTPA has been criticized from many directions. But entertainment
industries have effectively split it into a series of more palatable pieces. The
Motion Picture Association of America (MPAA) has spent the past year pursuing
three new regulatory measures:

1. A “broadcast flag” mandate for all devices that can receive digital
television broadcasts.

2. An “analog hole” watermark-detection mandate for “all devices that
perform analog-to-digital conversions”.

3. An unspecified technology mandate for peer-to-peer file-sharing software.

None of these measures, individually, is as drastic as the CBDTPA. Mandates
can be imposed gradually; technology industries may not launch an all-out
campaign against any particular measure. Tech vendors may be divided and
choose not to oppose measures that don't affect them directly.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

MPAA's lobbying for a “broadcast flag” mandate is already underway. This
proposal is specific to US terrestrial digital television broadcasts. But it's the
first part of a larger regulatory agenda that needs to be stopped now—movie
studios should have less, not more, control over our technology.

Current-generation US television broadcasts use the 50-year-old analog NTSC
transmission standard. In 1996, the US adopted a plan to replace NTSC
gradually with a next-generation digital standard, ATSC, capable of carrying
high-definition TV pictures. This transition was meant to finish around 2006
with the complete discontinuation of analog TV broadcast. Meanwhile, stations
are broadcasting both analog and digital TV signals (using additional channels
lent to them by the government). ATSC-capable home theater equipment and
PC adapters are now available. The transition is underway.

ATSC is an open standard, and terrestrial broadcasts using it are always
unencrypted. Therefore, the DMCA does not restrict the kinds of features that
can be included in an ATSC receiver. Hollywood studios have begun to
complain that this means ATSC broadcasts are too insecure for transmission of
Hollywood movies—if anybody can build a receiver, the movies could be used
in ways the studios might wish to prevent.

The studios have argued that the “insecurity” of ATSC receivers is deterring
them from licensing their movies for ATSC broadcast. They regularly license
their movies for unencrypted NTSC broadcast, but the superior quality of ATSC
purportedly makes it a more attractive target for copyright infringement.
Instead of encrypting the broadcasts, however, the studios have proposed new
legal restrictions that limit how a TV signal can be used on receiving devices.
According to the studios' proposal, the TV receiver, whether hardware or
software, would have to be “compliant” and “robust” against modification by an
end user.

Instead of encryption, the proposed measure is merely a label or header akin
to an e-mail header defined to signal “technological control of consumer
redistribution”. Such a measure is no more effective than an “X-No-Forward:” e-
mail header, but a law or regulation could deem it illegal to fail to honor such a
header.

This regulation leads us away from a world where people are free to implement
open standards as they choose. ATSC has been such a standard, but the
benefits of its openness, including support by free software, could be lost.

“Compliance” requirements limit permissible outputs to a short list of restricted
formats, implementations of which are subject, in turn, to DMCA restrictions.
Open standards need not apply. This creates a tremendous incentive for

consumer electronics manufacturers to implement proprietary technologies.
Open interfaces, which one studio representative referred to as “legacy
interfaces” because they lack copy controls, would suffer a substantial
competitive disadvantage.

“Robustness” requirements prevent programmers from developing free drivers
for ATSC, such as the free drivers already being developed for ATSC tuner
cards. They also would ban free software implementations of ATSC, such as
FSF's GNU Radio Project, which interprets radio signals in software. If software
can be modified by an end user, it can't be trusted to control how users use it—
the same argument the MPAA uses against the development of free DVD
players. The broadcast flag rules could result in a ban on certain kinds of free
software specifically because that software can be modified by end users.

The Federal Communications Commission (FCC) is now considering whether to
mandate that TV-receiving equipment comply with these rules.

EFF is fighting this proposal and recently filed comments with the FCC against it.
We attended all the meetings of the Broadcast Protection Discussion Group
where the proposal was developed. With our “Consensus At Lawyerpoint” web
site, we've tried to fill the information vacuum surrounding the broadcast flag
issue. (Reporters were barred from meetings, which had a $100-per-meeting
admission fee.)

email: schoen@loyalty.org

Seth David Schoen created the position of EFF staff technologist, helping other
technologists understand the civil liberties implications of their work, EFF staff
better understand the underlying technology related to EFF's legal work, and
the public understands what the technology products they use really do.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:schoen@loyalty.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

BlueCat Networks' Meridius Mail Relay

Nathan Smith

Issue #107, March 2003

The Meridius Mail Relay is designed to relay mail in order to protect your
internal mail server and filter out spam.

The Meridius Mail Relay is a rackmountable (1U) Linux-based mail appliance. It
is designed to relay mail in order to protect your internal mail server and filter
out spam. The Meridius is placed on the network between the Internet and
your e-mail server in a DMZ on the Internet or behind the firewall.

Figure 1. The Java-Based Management Console

The hardware specifications are likely to change with fluctuations in pricing and
availability, but the published specification is an Intel Pentium III running at
800MHz, with a 20GB hard drive and 256MB of RAM with two network ports.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/107/6348f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6348f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6348f1.large.jpg

The Meridius is based on several software packages, including Zmailer,
SpamAssassin, Apache and Tomcat. It is managed by a custom Java-based
management console.

Network configuration, including the IP address, netmask and gateway, is done
with small buttons and an LCD panel on the front of the unit. The Meridius is
then accessed using a browser, where a web page offers three options: open
the management console, install Java Web Start or read the system
documentation (a PDF file).

The first-time configuration of mail policies is performed using a wizard-like
tool. The wizard was enough to get a small organization like mine up and
running. The console is used for advanced configuration, such as routing mail
within an organization or within an ISP. Policies also can be configured to
refuse mail based on IP address, domain or e-mail address. E-mail aliases for
individual users also can be created and maintained in the console. All of these
settings, familiar to a mail administrator as part of the configuration files, are
easily set and modified in the Meridius console.

I placed the demonstration unit behind a firewall running NAT, which caused a
few problems that were not immediately apparent. When I had trouble getting
the antispam features to work, BlueCat's able technical support helped me
analyze the logs. There we determined that all inbound e-mail was coming from
the same address—the address of our firewall. The Meridius was relaying mail
for our domain properly before we uncovered this problem, but the antispam
features did not work. After we enabled reverse-NAT on the firewall, the
Meridius could see the true IP addresses and domains of the inbound mail, and
the antispam features began to work.

We use Microsoft Exchange 5.5 as our e-mail system, so we set the Exchange
server to route all mail to the Meridius and set the Meridius to route all
inbound mail to Exchange. I tested the Meridius in my organization for over a
month in a production environment. There were no noticeable changes in the
speed of our internet e-mail after the Meridius was added. We receive around
800 messages a day, and the Meridius had no trouble keeping pace.

In my early experimentation with the Meridius, I somehow managed to
download the 1.2 system update before I should have, which caused the
Meridius to stop working correctly. The mistake required me to restore the
Meridius from disk, and the system restore process was straightforward and
relatively simple. A monitor and a keyboard are connected to the Meridius,
which is then powered on with a boot disk in the drive, automatically restoring
the system. It was easy to re-install the settings I had previously configured, as
they are saved from the Java console to a location the administrator chooses.

An update has not been issued since 1.2, the first update, but I am told updates
should go much more smoothly in the future.

I had questions about the functions of the device several times, and the people
at BlueCat Networks were always responsive and helpful. From e-mailing and
talking to them, I got the feeling that they are a small company that cares about
releasing quality products.

Spamazon.com?

I was most excited about getting the power of SpamAssassin with Meridius,
without going through the learning curve of installing and configuring. The
users, however, were not entirely delighted when messages with a subject
starting with “** SPAM ” began arriving in their inboxes, with blocks of
technospeak at the top and no human-readable HTML messages. BlueCat
Networks was in the process of releasing a fix (1.2) to restore HTML e-mail.
User acceptance of Meridius' antispam component was probably the hardest
part of installing the appliance. Some users were offended that advertisements
they got from Amazon.com were labeled as spam. I wrote up some instructions
on how to create a folder for spam and pass anything with the “X-Spam-Flag:
yes” setting into it. I was happy with the anti-spam performance in my own
mailbox. After the Meridius installation, the signal-to-noise ratio in my inbox
improved significantly. I now have an average of 45 messages dropping nightly
into the folder I created for spam. Meridius made going through morning
messages a breeze.

I am pleased how simple the Meridius is to administer. When a user forwards
me a message with an address or domain they want placed on the whitelist, I
simply copy the original sender's e-mail address and paste either the address
or the domain into the console. After running the update process, the new
changes take immediate effect.

BlueCat Networks is hinting at a lot of improvements and more functionality to
come in new versions of the software, which can be downloaded. I would like to
see context-sensitive help in the administration console and user-submitted
whitelists.

Does the functionality and usability of the system offset its $7,000 US price tag?
If Meridius is used only for relaying messages, I think the answer may be no for
many organizations. A lot of administrators could put similar functionality
together for less money. With the Meridius you are paying for good hardware,
support and the administration tool assembled and tested as a polished
product. I believe an organization like ours (about 50 users) is probably on the
small end of company sizes that would make such an investment. Used
correctly, over the life of the device, the anti-spam feature could easily save our

professionals $7,000 US in billing hours. For perspective customers, BlueCat
Networks offers a web demonstration and an evaluation unit of the Meridius.

My experience with the Meridius has been a pleasant one. If you would rather
spend your time doing interesting things instead of sorting through spam
messages, worrying about open relays and administering electronic mail
systems, you may find the Meridius is a good fit for you too.

Product Information

email: smith@ipmvs.com

Nathan Smith (nathan.smith@rockinghamridge.com) is a systems administrator
for an intellectual property law firm. A Windows user but a Linux and *BSD
aficionado, he is always looking for ways to move toward a more open
computing environment.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6348s1.html
mailto:smith@ipmvs.com
mailto:nathan.smith@rockinghamridge.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Mathematica 4.2

Dragan Stancevic

Issue #107, March 2003

Mathematica is the Swiss Army Knife of technical computing.

It is hard to describe what Mathematica is and what it is used for because it can
be used for so many diverse things. If I were asked “What is Mathematica?” by
someone who has never heard of it, I would probably say it is the “Swiss Army
Knife of technical computing”. That might not exactly answer the question, but
once they got to know Mathematica they would understand the meaning of the
reference.

To elaborate on my Swiss Army Knife characterization, here are a few fields in
which Mathematica is in use today: engineering, physics, computer science,
publishing, finance/economics, mathematics, social sciences and life sciences.

Besides Mathematica's wide field of application, the support for various
hardware platforms and operating systems is just as varied. Mathematica 4.2
runs on the following operating systems: Linux, Mac OS X, Mac OS 8.1 or later,
Windows, Solaris, Tru64, HP-UX, AIX and IRIX.

If we concentrate only on the Linux release of Mathematica, we'll see that to
Wolfram Research, Linux is not just another operating system to which to port.
The Mathematica kernel is entirely developed on Linux and then ported to
other platforms. No wonder the Linux release of Mathematica actually runs on
four different architectures: IA-32 (x86), PowerPC, Alpha and IA-64 (Itanium).
There is also a version of Mathematica for Linux clusters called
gridMathematica.

There is no doubt that Linux is an important market for Wolfram Research both
in professional and student applications. The commercial license might be a bit
too pricey for a casual home user, but it's well worth it for an enterprise or a
research environment. On the other hand, the student version of Mathematica
is a bargain and has exactly the same features as the commercial version.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Mathematica 4.2 package contains: “Installing Mathematica 4.2 for Unix
and Linux”, “Getting Started with Mathematica”, The Mathematica Book (Fourth
Edition), Standard Add-on Packages and Mathematica 4.2 (installation CD).

“Installing Mathematica 4.2 for Unix and Linux” includes information on UNIX
and Linux installation and describes the upgrade process from earlier versions.

The “Getting Started with Mathematica” guide is a 50-page booklet describing
the basics of Mathematica. It is a good reference for beginners as it is a fast
crash course on usage and interaction with Mathematica. The guide also lists
various on-line resources, which are a must-see for new users.

The Mathematica Book (Fourth Edition) is an approximately 1,500-page book on
Mathematica functions and capabilities. This has got to be the most definitive
resource on the subject. It contains more information than I could ever possibly
describe for this review.

Standard Add-on Packages is a 500-page book dedicated to more than 1,000
additional functions that are in the Standard Add-on packages. Standard Add-
on packages are a part of the full version of Mathematica and include, but are
not limited to graphics, geometry, audio, statistics, units, algebra, calculus,
discrete mathematics and numerical mathematics. The subject of this book is
somewhat complementary to The Mathematica Book, and I felt that it should
really be a part of it, especially considering the fact that the Standard Add-on
packages are distributed with all releases of Mathematica.

Mathematica 4.2 for Linux runs on three different platforms: x86, Alpha and
PowerPC (an Itanium version has just been released, so it wasn't on the CD).
The media also contains both The Mathematica Book and the Standard Add-on
Packages book. The books are in the Mathematica “Notebook” format, which is
browseable and searchable. Having the books in such a format is a great
reference while working on your own creations in Mathematica, whatever they
might be.

Mathematica installation is pretty straightforward. Pop the CD into your CD-
ROM; go into the appropriate platform subdirectory under the Installers
directory and run the MathInstaller script. At the end of the installation, the
installer will ask for your license number and password. It is okay if you don't
have all the required information at this time. You will be prompted again later
when you run Mathematica.

Your license number always remains the same, even when you upgrade. Your
password is generated by Wolfram Research when you register. In order to give

you a password, they need your license number and your MathID, a value that
is generated dynamically when Mathematica starts up.

From my own experience I wouldn't recommend installing Mathematica on a
system where the configuration changes frequently. If the system configuration
changes, it's very likely that the MathID will change too. This also holds true for
upgrading to a new kernel. What this really means is that you have to contact
Wolfram Research and get another password. I am sure that this helps them
prevent some opportunistic unauthorized copying of the program. Having said
that, I found it a nuisance.

The fundamental idea behind Mathematica is what makes it such a versatile
and powerful computing platform. Everything in Mathematica is represented as
a symbolic expression typically looking like “Sin[x]”. And that is the key because
any function in Mathematica can be an output to or take input from any other
function. This opens up so many possibilities I was literally overwhelmed by the
sheer number of things I could try for the review.

To help you better visualize the “any to any” concept of Mathematica let's take a
look at the Sin function in Figure 1. The function Sin takes the variable x10 as
input and outputs to the function Plot. This makes a nice plot of the values that
the function Sin produces. If we decide we want something other than a regular
plot we can simply represent the Sin function output with a different function.
Play for example, produces an actual sound that is heard when you click on the
picture.

Figure 1. Some 2-D Graphs

I also wanted to explore the 3-D capabilities of Mathematica. As you can see in
Figure 2, I am using the Sine and Cosine functions as input for the
“ParametricPlot3D” function. As I finish typing the expression, I press Shift-Enter
and Mathematica produces a 3-D plot of the data.

Figure 2. Exploring the 3-D Capabilities of Mathematica

Those are just a few out of the 1,100 built in and 1,000 additional functions that
come with the 4.2 Mathematica package. In the limited amount of time I had
for this review, I felt that I had not even scratched the surface of the computing
system that is Mathematica.

Not only that, Dr Michael Trott of Wolfram Research, the author of the book
Graphica—www.graphica.com, generously provided me with the full notebooks
(2GB) of his upcoming book series called The Mathematica Guidebook Series. It
was a real treat to browse, experiment and evaluate the expressions that
produce some of the stunning images that appear in Wolfram Research
publications—images such as the “Mathematica 4 Dodecahedron” from the
cover of The Mathematica Book and many, many more. I can't wait until the
book series is finished.

Evaluation of Mathematica was done on two different architectures and two
different operating systems. I personally reviewed the Linux version on x86
while a mathematician, Dr Helen Moore, worked on the Mac OS X release.
Helen helped with the evaluation, although this review is solely my own
opinion.

http://www.graphica.com

Using Mathematica on the two platforms was basically analogous, and both
Helen and I liked the product. However, we were a bit vexed with the
registration and password creation process. Despite these issues, we would still
recommend Mathematica for Linux or Mac OS X to anyone.

The people at Wolfram Research were really willing to listen and work on all the
issues that I brought up (great service). Mathematica for Linux is a great
product. It's probably the most beautiful piece of Linux software I have ever
used. During my review, I couldn't help but spend hours and hours just
experimenting with the capabilities and exploring the options.

Helen said, “Mathematica is great. It's pretty much the best commercial
package available, both for symbolic and numerical computations.”

Product Information

Acknowledgements

Special thanks to Dr Helen Moore for her help with the evaluation, Dr Michael
Trott for letting me use his notebooks, and Ben Wilson and PJ Hinton of
Wolfram Research for their help and quick answers to my queries.

email: visitor@xalien.org

Dragan Stancevic is a kernel and hardware bring-up engineer in his late
twenties. Although Dragan is a software engineer by profession, he has deep
interest in applied physics and has been known to play with extremely high
voltages in his free time.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6386s1.html
mailto:visitor@xalien.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #107, March 2003

Readers sound off.

Letters

Marry Me, Marry My LJ

This photo was taken when my wife and I were waiting to get married in the
chapel on the second floor of New York City Hall. I just received the 100th issue
of LJ and brought it along. You can tell from the photo that my wife was a little
jealous. So the title for the photo is “Beauty or LJ”. Hope you like it.

—Ning Qian

Beauty or LJ: Bride-to-be Qing Xiang peeks at fiancé Ning Qian's Linux Journal (photo: Nicole
Xiang).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Two FTP Proxies?

I enjoyed reading your article about setting up an FTP proxy [LJ, December
2002]. I was just curious about one point. You make a comment about not
being able to configure the acceptable commands list differently for internal
and external users. Is it possible to set up two proxies then route the incoming
requests at the firewall for internal addresses to one proxy and those from
external addresses to the other?

—John

Mick Bauer replies: That's an excellent idea! You could set up a proxy on the
firewall for external users, with read-only permissions, and set up a proxy on
some host on the inside for outbound transactions, with looser permissions.
You could then configure your firewall to permit outbound FTP only if it
originates from the designated internal proxy.

Acronym Recycling Department

It's great to see those huge old machines coming back! I saw an advert in Linux
Journal for a CDC 6400, the baby brother of the immense CDC 6600. Of course
today we could not use Freon to cool it. And software is coming back! SOAP, for
instance, the Symbolic Optimal Assembly Program for the IBM 650. Magnetic
drum memory will never die! I have even seen articles about ASP, the Attached
Support Processor for the IBM 360/65. Who says I'm a dinosaur?

—Peter Chase, Alpine, Texas

Is ptrace Secure?

The articles on ptrace in the November and December 2002 issues were very
informative. So what's to stop someone from using ptrace to insert some
malevolent code in a running program? Forgive me for looking on the dark side.

—Walter S. Heath, Concord, Massachusetts

Keep thinking evil thoughts. You can't keep a system secure without studying
possible attacks. Fortunately, you can only ptrace a process if it's your own
process, or if you're root.

—Editor

Another OpenLDAP Win and a Fix

I have found an error in my article, “OpenLDAP Everywhere” [LJ, December
2002]. In the auto.home section on page 54, the gomerp entry has the line:

cn: super3

The line should read:

cn: gomerp

A reader contacted me after copying the entry exactly from the article. He has
fixed his configuration and is up and running with unified logon. Matt Lung and
I are very pleased with the article as published. Our mothers are very proud!

—Craig Swanson

Where's zNav?

We were a little disappointed by your article on the applications for the Zaurus.
You listed many commercial applications and yet when it came to mapping/
navigation software you listed only the free one. zNav and zNav Lite are the
only Zaurus mapping/navigation products that use commercial navigation
charts.

—Patrick Cannon, Barco Software, LLC

Installfest at 11,000 Feet

Here the world's highest Linux install event took place Saturday the 12th of
December 2002, 11,000 feet above the sea. It was the first of its kind in this part
of Bolivia—and maybe a world record when it comes to altitudes and Linux
install events.

The organizers task force: Janus Sandsgaard, Edgar Ruiz, Juan Conorel, Devin Conde, Hardy
Beltran, Christian Mollo and Jorge Castro.

—Janus Sandsgaard

Zaurus Articles Monthly, Please

Yesterday I was very happy to see that the Zaurus was on the cover of the
January 2003 issue of LJ. I am involved in the OpenZaurus Project, and I would
really appreciate a monthly section on the Zaurus on LJ.

—Paolo

tkcGallery vs. MooView

When you mention the Zaurus applications tkcGallery and MooView [LJ, January
2003], you completely leave out the point that MooView cannot handle even
reasonably sized files, just like the included image viewer, while tkcGallery can
handle virtually any size image. I've tested up to ten megapixels so far. The
general feeling here is that if it is a commercial app you must make some
negative mention, and if it is free then there must be nothing wrong with it.

—Shawn Gordon, President, theKompany.com

Guylhem P. Aznar responds: I just could not recommend every single
application. Yes, I did mention the problems I had and the existing free
software equivalent if there were any, but I also gave strong purchase advice
for some unique software such as tkcJabber.

Meet Linux Professionals at Borders

Go to a Borders bookstore some Saturday as I do and pick up a book on Linux,
or Linux Journal, and read it. Stay there for two hours and you will have a
minimum of two people come up to you and tell you of their companies' recent
conversion from Windows to Linux servers.

—Charles Ebert

Hey! This isn't a library! Are you going to buy that?

—Editor

Thanks for the Clues, LJ

Somehow I managed to forget to bring reading material for my Thanksgiving
flight, so I found myself looking through the junk that the airports had to offer.
My brother said I should get a magazine but I refused to pay five bucks for
something without content. I returned home to my latest Linux Journal. In every
issue you folks manage to cram lots of good stuff onto those pages. So many
computer magazines are more like bridal zines, to be purchased only when one

is in the market for something new. Linux Journal, on the other hand, puts
together great articles for people who actually use the machines they own. So I
just wanted to send out a thanks. Some days I think your organization is the
only place that has a clue as to what people want.

—Tim

Thumbs-up on Bluecurve

I have to disagree with the comments made by Tom Amon in your January 2003
Letters section (entitled “Red Hat 8.0: Love the License, Hate the Look”). Red Hat
has made an attempt to bring forward a “best of breed” desktop. Having KDE
(or GNOME if you wish) pre-setup with Mozilla, Evolution and OpenOffice
seemed, to me, a vast improvement over the 7.3 release. I'll concur with Tom
that the result is not perfect (where did Xine go, Red Hat?), but this is a road I
would like Red Hat to stay on.

—Timothy J Halloran, Carnegie Mellon University

Hooray for Zaurus and LJ Ads

An excellent article on how to use your Zaurus and what various hardware and
software options are available [LJ, January 2003]. The Zaurus is a system that
can stand on its own, and more articles on it would be welcome. I can also say
that I find the advertising in your magazine an excellent resource of what's
available in the Linux world.

—Julian Macassey

Why Java without the VM?

The author of “Compiling Java with GCJ” [LJ, January 2003] misses the point of
what makes Java a more viable solution than any natively compiled language,
namely, platform neutrality á la the Virtual Machine. Simply put, natively
compiling Java defeats the primary purpose of why Java was invented in the
first place. I compile GIS Java code once on Linux and run that same code on
Mac OS X, AIX, Solaris and more, with great success and eye-popping
performance. A key Java goal is to limit the long development cycle time of
software by avoiding native porting overhead.

—Bryan McKinley

Rackspace vs. Spam Blacklists

On page 15 of the January 2003 Linux Journal you have a full-page ad from
Rackspace. I would advise anybody looking for hosting NOT to go to Rackspace.
They are well known for hosting spammers. The “100% network uptime” they
boast about in the ad does you no good if your class C is blackholed due to the
spammers you share it with. I would advise anybody seeking hosting to closely
check the anti-spamming resources before contracting for hosting.

—David D. Hagood

Likewise, you should check out any spam-filtering service you plan to use to see
how much legitimate mail gets blocked because of who the sender's network
neighbors are. The www.linuxjournal.com web site is at Rackspace, and it works
fine for us.

—Editor

Go on, Take the Microsoft Ad

I enjoyed both Renato Carrara's letter in the December 2002 Linux Journal, and
Gary Nickerson's reply in the January 2003 issue. I don't think that it's
necessarily dangerous for a (relatively) small-circulation publication like Linux
Journal to sell advertising to Microsoft; Bill's money is just as green as anyone
else's. However, as a publication grows, it needs to beware of developing a
dependency on large, powerful advertisers such as Microsoft. High overhead
can make them susceptible to the threat (explicit or unstated) of one or more
large advertisers pulling their ads. I hope that LJ can grow at a measured pace
and thus maintain its independent spirit and its outstanding content. In the
meantime, I appreciate your great work in building a very useful and readable
publication. Please keep it up. And, hey, if you're able to siphon off a few bucks
from The Beast along the way, more power to ya.

—Ken

Thanks for Not Taking the Microsoft Ad

Regarding the letter “An Ad Is an Ad” in the January 2003 issue, I think the
decision not to run ads from Microsoft is a great one. If I need information from
them I know exactly where to find it. The ads in Linux Journal nowadays are
really a welcomed break from other “infested” publications. I think it's really
important that you guys keep your focus on the values of where you came
from, since it really makes a big difference for us readers. Truly, it's a joy to
read your magazine, all the fresh people and talk and the lack of all the
corporate bull.

https://secure2.linuxjournal.com/

—Boris Debic, San Mateo, California

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Upfront

Various

Issue #107, March 2003

LJ index, diff -u and more.

upFRONT

cfg2html: members.tripod.com/rose_swe/cfg/cfg.html

This utility will go over your system and extract a lot of information, enough
information that you should be able to rebuild the system almost exactly as it
was. That's probably a little more detail than I'd be comfortable with putting on
a web site, but great to print out and put in your system's notebook (your
systems do have notebooks, right?). Requires: BASH and standard UNIX tools.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://members.tripod.com/rose_swe/cfg/cfg.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f1.large.jpg

—David A. Bandel

diff -u: What's New in Kernel Development

Shortly after the kernel's Halloween feature-freeze, Guillaume Boissiere

decided to put together some statistics on the incorporation of features into
the 2.5 tree. He examined almost the entire history of the 2.5 development
cycle, starting in early 2002. He created seven possible status categories for any
given feature: planning, started, alpha, beta, ready for inclusion, pending
inclusion and fully merged. His first progress chart (Figure 1) shows the
percentage of features in each category. The second progress chart (Figure 2)
shows the actual number of features in each category, changing over time.
Without making any claim to complete accuracy, the graphs are interesting, if
for no other reason than to observe how seriously most developers took the
drive toward feature-freeze. Note also the hump of work done over the
summer, followed by a complete end to new feature planning. That hump of
activity corresponds roughly to the time when the decision was made to freeze
by November.

https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f2.large.jpg

Figure 1. The Percentage of Features in Each Category

Figure 2. The Actual Number of Features in Each Category

To facilitate the movement from feature-freeze to actual 2.6 (or 3.0) release, the
Open Source Development Lab (OSDL) donated labor and equipment to
maintain a Bugzilla bug-tracking database for the Linux kernel at
bugzilla.kernel.org. Support for this was initially strong among developers, but
it tapered off a bit when big guns, like David S. Miller, found duplicate entries
and frivolous reports made the system, at least in its original form, more
trouble than it was worth. No one wanted to give up on it, however, and a
concerted effort seems to be underway to bring the bug database to a usable
state.

In more debugging news, Linus Torvalds indicated for the first time he might be
willing to accept patches into the kernel to support a kernel-based debugger.
Traditionally, Linus' stance has been that real programmers debug from source
files. While not actually explaining the reason for his change of policy, he now
seems to think that a kernel debugger running across a network would be a
good feature to let into the kernel. Don't look for it in the next stable series,

https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f3.large.jpg
http://bugzilla.kernel.org

however, as he was careful to make this statement after the feature-freeze had
passed.

A new read-only compressed filesystem, along the lines of cramFS, emerged in
late October and targets the 2.4 kernel. SquashFS claims to be faster and to
produce tighter compression than either zisoFS or cramFS. The author, Phillip

Lougher, wanted to address some of the limitations of other compressed
filesystems, particularly in the areas of maximum file size, maximum filesystem
size and maximum block size.

And speaking of filesystems, does anyone remember xiaFS? In 1993 it was
regarded, along with ext2fs, as a serious contender for world domination. In
fact, the two filesystems leapt into public use within a few weeks of one
another. For a while it even looked as though xiaFS had taken the lead. By 1994,
however, it had essentially dropped off the map, and a few years later it was
actually dropped from the official kernel tree. In 2000, Linus remarked that it
would be fun to have it back. Finally, just after the Halloween freeze Carl-Daniel

Hailfinger asked if this offer was still good. Linus said sure, and even offered to
make an exception to the feature-freeze, if Carl could deliver the patches.

—Zack Brown

LJ Index—March 2003

1. Percentage of movies released between 1927 and 1946 that are currently
unavailable: 93

2. Number of government desktops converted to Linux in Spain's
Extremadura region by November 2002: 10,000

3. Number of government desktops expected to be converted to Linux in
Spain's Extremadura region by November 2003: 100,000

4. Downloads of Extremadura's own Linux distro, Linex, from outside the
district: 55,000

5. Dozens of countries with laws encouraging free software: 2
6. Number of free software laws or policies pending in those countries: 70
7. Number of Linux management tools in IBM's Tivoli in 2001: 2
8. Number of Linux management tools in IBM's Tivoli in 2002: 20
9. Percentage of IT managers employing Linux “in some capacity”: 39

10. Number of different Linux-based PDAs: 23
11. Number of servers in a Linux cluster installed at the University of Buffalo

in September 2002: 2,000
12. Number of servers in another Linux cluster installed at the University of

Buffalo in November 2002: 300

Sources

• 1: Jason Schultz, in a letter to Lawrence Lessig

• 2-6: Washington Post

• 7, 8: Information Week
• 9: Goldman Sachs Research, IDGnet
• 10: LinuxDevices.com

• 11, 12: Boston Globe

Listening Post: On-line Fora as Art

Setting the mood for this month's issue is our cover photograph of Mark
Hansen and Ben Rubin's Listening Post, currently featured at the Whitney
Museum of American Art in New York (www.whitney.org). This remarkable
installation runs on four computers and as many operating systems (including
Linux, of course) and expresses the collective voice of the Internet,
transforming on-line communication into a multimedia installation.

According to the Listening Post web site, “statistical analysis organizes the
messages into topic clusters based on their content, tracking the ebb and flow
of communication on the Web. A tonal soundscape underlies the spoken text,
its pitches and timbres responding to changes in the flow and content of the
messages.”

I was lucky enough to “view” the Listening Post when it was in Seattle in
November 2002, and my first impression was an almost eerie sense of
humanness the piece unveils—a poetry not typically associated with computer
technology. In a dark room complete with pillows on the floor, a wall of tiny
screens depict glowing green text gathered in real time from thousands of
public on-line communication channels. These bits of text are accompanied by
a computer-generated voice with a British accent, randomly speaking different
messages as they flash by. I was particularly struck by the “I am” series; real-
time messages beginning with the string “I am” spoken into the darkness: “I am
tired.” “I am happy.” “I am Norwegian.” Hundreds of people communicating the
most basic aspects of themselves at that precise moment from who knows
where to who knows who, while my imagination worked double time wanting
to fill in the rest of their stories.

Capturing the ephemeral nature of the Listening Post is difficult; however, Ben
Rubin, one of the creators of the Listening Post, best describes the piece in his
artist's statement:

Anyone who types a message in a chat room and hits
“send” is calling out for a response. Listening Post is

http://www.whitney.org

our response—a series of soundtracks and visual
arrangements of text that respond to the scale, the
immediacy and the meaning of this torrent of
communication.

Every word that enters our system was typed only
seconds before by someone, somewhere. The
irregular staccato of these arriving messages form the
visual and audible rhythms of the work. The sound-
generating systems are constructed almost as wind
chimes, where the wind in this case is not
meteorological but human, and the particles that
move are not air molecules but words. At some level,
Listening Post is about harnessing the human energy
that is carried by all of these words and channeling
that energy through the mechanisms of the piece.

Listening Post represents the most significant outcome
so far of my collaboration with Mark Hansen, the only
artist I know whose medium of expression is statistics.
Since we began working together, my conceptual
vocabulary has grown to include notions like
clustering, smoothing, outliers, high-dimensional
spaces, probability distributions, and other terms that
are a routine part of Mark's day-to-day work. Having
glimpsed the world through Mark's eyes, I now hear
sounds I would never have thought to listen for.

Visit the Listening Post web site (www.earstudio.com/projects/
ListeningPost.html) for exhibition dates and further information.

—Jill Franklin

Monster Cluster

The Linux NetworX Evolocity super cluster built for Lawrence Livermore
National Laboratory is the number five supercomputer in the world, according
to the Top500 Supercomputing List, and it's tops among Linux-based
supercomputers.

http://www.earstudio.com/projects/ListeningPost.html
http://www.earstudio.com/projects/ListeningPost.html

Here are some facts about it:

• 2,304 processors.
• Can process 5.694 trillion calculations per second (teraFLOPs) running the

Linpak benchmark and up to 11 trillion calculations per second using
other measures.

• Is the size of a full tennis court.
• Cooling requires 109 tons of air conditioning, enough to cool 22 homes.
• Uses nearly nine miles of cable.
• Weighs 35 tons.
• Is 8.6× more powerful than Deep Blue, the IBM computer that beat Garry

Kasparov in 1997.
• Has the same amount of processing power as 11,200 PCs.
• Can do in one day what would take an average PC 25 years.
• Could assemble the human genome in 18 days, compared to the 150 days

it took Celera.
• Has 5× the memory required to hold the entire Library of Congress.
• Is 5.6× more powerful than the computer used by Pixar to create the

movie Monsters Inc.

(Source: Linux NetworX)

—Doc Searls

Note: www.0x49.org

I had a tough time choosing between a couple of extremely good utilities I
reviewed three years ago. These included Downloader for X, which I use
regularly, gnotepad+ and xglobe. But I had to go with Note. There's nothing
incredibly special about Note other than it does exactly what it says—keeps

http://www.0x49.org

notes for you. It works by keeping your notes in a binary, DBM or about any
Perl-supported SQL back end. Notes can be edited, deleted or moved into
subfolders (topics). Your notes database also can be either in plain text or
encrypted form. This makes it ideal for storing passwords or other sensitive
information. Requires: Perl, Perl modules: IO::Seekable, DBI::mysql (or other
DBI-specfic module, optional), DB_File (optional), MD5 (optional), Crypt::IDEA
(optional), Crypt::DES (optional), Crypt::CBC (optional).

—David A. Bandel

N-View: www.n-view.de/index_en.html

For those of you who've used tkined, the network monitor N-View will not be a
stranger. However, N-View is quite a bit faster and easier to use. You can have
multiple tabs with different subnets. Its biggest drawback, requiring JRE, can be
overcome by simply using the package with JRE included. N-View will also mail
you if a particular system is suddenly unreachable, though that's not much
good if that system is your e-mail server. Requires: Java.

—David A. Bandel

They Said It

I've visited a whole lot of government organizations. Virtually every government
agency I've visited has Linux somewhere in the enterprise....The question is:
Does anyone know about it?...I suspect at least half of those who say they don't
use it have it in their enterprise but don't know about it.

—Robert Hibbard of Red Hat

http://www.n-view.de/index_en.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/107/6495f5.large.jpg

We haven't developed the vocabulary to credit the open-source dynamic for
what it is rather than a puzzling aberration of hackerdom. Once we have the
vocabulary—a way of measuring quality vs. cost—we'll elevate open source to
the pinnacle it deserves: the most productive process in an economy obsessed
with productivity.

—Britt Blaser

Tower Toppler: toppler.sourceforge.net

Here's a great little game, especially for your preteens. The object: get to the
top of the tower. The problem: all kinds of things are trying to knock you down.
Some of the things you can destroy, and some you simply have to avoid. The
game has excellent graphics, and play is extremely smooth. A number of levels
and towers are available, but at the rate I get knocked off, I'll be on the
beginner tower for a while. Requires: libSDL, libpthread, libz, libstdc++, libm,
libX11, libXext, libdl, glibc.

—David A. Bandel

email: zbrown@tumblerings.org

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://toppler.sourceforge.net
mailto:zbrown@tumblerings.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On-line Communities, Hold the Spam

Don Marti

Issue #107, March 2003

You can start a blog without getting buried in junk mail.

People who are new to on-line communities are naturally concerned about all
the spam they might get. What? Post your address publicly, for all the
spammers to put on their CDs? It's true, you do start to get a lot of spam if
you're active on publicly archived lists or run a web diary or blog. But don't be
too afraid of spam. A world without spam would be a world without a lot of
other things, too.

You could stop spam with one global uniform internet law, strictly enforced
worldwide. But before any such law made any impact on spam, it would shut
down a lot of stuff you like that your least favorite country convinced the global
spam conference to ban.

You could change your address constantly and throw away anything sent to an
old address. But there goes your chance to get mail from new people.

You could do what some companies and members of the US Congress are
doing and turn the process of mailing you into a little dance with an automatic
challenge that's impossible for spamware. But apply the Golden Rule for a
minute and imagine if everyone you wanted to write to did that to you.

A total end to spam would be worse than spam. If you want the benefits of
mail, you're going to have to put up with a little spam. But how little can you get
away with? Gary Robinson is pushing the limits of automatic spam detection
with some mathematical research on page 58.

Then, on page 52, Richie Hindle takes a look at how to set up Spambayes to
start marking and filtering your spam right now. Spam-filtering developers are
coming up with new math and new functionality all the time.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Sometimes I think Google works as well as it does because Doc Searls and his
friends thoughtfully link to the good stuff on the Web, thereby pumping up the
“Google Juice” of interesting pages. How do you become a commentator,
tastemaker or diarist? Pick a blog package and start typing. Naturally Doc and I
disagree on which software is best, but he's the man where blogs are
concerned. See for yourself on page 66.

On page 72, Marilyn Davis explains that true democracy needs both elections
and deliberation. Most systems offer one or the other, but not both. However,
Marilyn's eVote system makes it possible for any user of a Mailman-based
mailing list to start a wide variety of single-choice or multiple-choice polls. After
the initial setup, there's no need for an administrator.

Every once in a while, face-to-face contact is a good idea, too. Fortunately for us
Linux users, there are many ways to meet off-line and have been since the
beginning. Check out the “Groups of Linux Users Everywhere” (GLUE) link on
the Linux Journal home page, give your carpal tunnels a break, and meet some
Linux people face-to-face too.

Don Marti is editor in chief of Linux Journal and usually finds the answer right
after he asks a dumb question on a mailing list.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

E-mail Everywhere from Anywhere

Heather Mead

Issue #107, March 2003

Whether you want to connect your home system to the Web while you're at
work or need to view e-mail attachments on a remote system, the LJ web site
has an article about it.

I am writing this article on my last day of work before I leave; later tonight, I'll
be on a red-eye flight to Pennsylvania to spend Christmas and New Year's with
my family. Besides the chance to wake up to a snow-covered lawn, one of the
things I am most looking forward to is not having e-mail access for two whole
weeks. Oddly enough, my friends find this weird—both my lack of access and
my excitement over it. Even my friend who barely knew what e-mail was a mere
six months ago expressed shock about my willingly going without it.

For those of you who can sooner imagine parting with a limb than parting with
e-mail, the Linux Journal web site has some articles that should prove both
interesting and useful. First off is Nick Moffitt's advice for “Busting Spam with
Bogofilter, Procmail and Mutt” (www.linuxjournal.com/article/6439). Nick
presents the macros he added to his system-wide configuration file to make
training a Bayesian spam-filtering system as easy as deleting spam and saving
or replying to interesting mail—things you do anyway. His macros are also good
for personal Mutt configurations, so you don't need root access to start
catching spam now.

If you've ever had a need or desire to access your home system remotely but
can't SSH in because of a firewall, “Using E-mail as a System Console” can help
solve your dilemma. This three-part series (www.linuxjournal.com/article/6453,
with links to Parts II and III) is the work of Michael Schwarz, Jeremy Anderson,
Peter Curtis and Steven Murphy from their book Multitool Linux. They explain
how you can use Fetchmail, Procmail and a few scripts to access information,
execute commands and even connect to the Internet strictly from e-mail.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6439.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6453.html

Writing an article rejection letter led to “Mutt Over SSH, but What about
Attachments?” (www.linuxjournal.com/article/6511) by Linux Journal Editor in
Chief Don Marti. Usually our rejection letters are not this extensive, but in
explaining why the article did not go far enough, Don ended up offering some
methods for viewing e-mail attachments remotely. Reader-posted comments
have continued the conversation, debating the merits of IMAP vs. its slow
speed. If you've got a better way of dealing with viewing e-mail attachments
remotely, please write about it in the article comments section. Don really
wants to know a better way.

If you want to share the details of a unique e-mail configuration you've
designed that can, say, command your house to clean itself or enable you to
launch bottlerockets from work, drop us a line at info@linuxjournal.com.
Remember to check the Linux Journal web site often; new articles are posted
daily.

Epilogue: So the holidays are over, and it's my first day back at work. Over
dinner last night, I told a friend that I'd be happy if less than 500 e-mails were
waiting for me. The final count? 846.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/000/6511.html
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #107, March 2003

Our experts answer your technical questions.

SSH Won't Let Me In

I've installed Red Hat 7.3 and Red Hat 8.0, and when I use SSH I get an error
that says “Connection Refused”. I can SSH on either machine to itself, but not
from another machine. I've shut off the iptables service, and I've made sure
that in /etc/xinetd.d/telnet the line disable=no is present. I've done a netstat -t |

grep telnet and netstat -t | grep ssh, and they tell me that these services are
running.

—Robert Haack, haack@nclack.k12.or.us

Check to be sure you can ping from one box to the other. If so, use a tool such
as Nmap to verify that the port appears to be open end-to-end from one
system to the other.

—Chad Robinson, crobinson@rfgonline.com

Look at /var/log/messages or /var/log/auth.log, which should show you why
SSH is dropping the connection. Odds are your machine checks the reverse
DNS mapping for your IP addresses and fails. One way to fix that is to populate
/etc/hosts with the IP and hostnames of your machines.

—Marc Merlin, marc_bts@google.com

Check the /etc/hosts.allow and add sshd: ALL (or the IP address of the remote
machine), because this is probably the reason you can connect locally but not
from another machine.

—Mario Bittencourt, mneto@argo.com.br

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:haack@nclack.k12.or.us
mailto:crobinson@rfgonline.com
mailto:marc_bts@google.com
mailto:mneto@argo.com.br

SSH does everything Telnet does and more, and uses encryption, so you should
leave the obsolete Telnet service off. Especially now that wireless networks are
everywhere, you can't afford to reveal your password on the Net. You're right
to use netstat to check for a listening SSH dæmon; however, you need to add
the -a option. Do this:

$ netstat -at | grep ssh

And look for a line that looks like:

tcp 0 0 *:ssh *:* LISTEN

to see that sshd is listening for incoming connections.

—Don Marti, info@linuxjournal.com

If the SSH dæmon isn't running, start it with service sshd start or set it to come
up automatically with:

chkconfig --level 2345 sshd on

—Felipe E. Barousse Boué, fbarousse@piensa.com

Modem Lights Won't Let Me Log Off

I can use the Modem Lights applet in Red Hat 8.0 to establish a PPP connection,
but I can't use it for disconnecting. When I press the button a second time in
order to disconnect, I'm once again confronted with the question “Do you want
to connect?” If I answer No, nothing happens. If I answer Yes, I get disconnected
and then connected again. How can I configure Modem Lights to do what it's
actually supposed to do?

—Martin A. Boegelund, goblin@linuxmail.org

The default setup is the problem here. In the Preferences window for the
Modem Lights applet, you will find an Advanced tab. Click it, then set the
modem lock file appropriately. Try setting it to /var/lock/LCK..modem.

—Ben Ford, ben@kalifornia.com

Dual-Boot Hangs on Install

I just bought a Compaq Presario 1516US, and it came with Microsoft Windows
XP. I partitioned the hard drive using Partition Magic, and when I put in the Red
Hat 8.0 install CD it goes through the initial checking screen. When it gets to the
following it hangs:

mailto:info@linuxjournal.com
mailto:fbarousse@piensa.com
mailto:goblin@linuxmail.org
mailto:ben@kalifornia.com

Partition Check:
 hda:

The cursor only blinks and nothing happens.

—Avran, idontlikemail@earthlink.net

This page has a useful tutorial on how to set up the Linux GRUB boot loader to
handle a dual-boot system on machines that have Windows installed before
Linux: www.geocities.com/epark/linux/grub-w2k-HOWTO.html.

—Felipe E. Barousse Boué, fbarousse@piensa.com

No repartitioning tool is 100% foolproof. All of them warn you to do a good
backup first. Dual-boot is an inefficient way to work, because the application
you need always seems to be on the other OS. But if you are going to dual-
boot, make sure you have a good backup of your original OS and can restore it.

—Don Marti, info@linuxjournal.com

SMP System Won't Power Off

I am running Red Hat 8 with SMP. I have noticed that when I am running the
kernel for a single processor the system powers off normally. If I select the SMP
kernel during boot and then shut down, however, the system will shut down all
processes and then produce the prompt to shut power off. My question is, why
doesn't the system power off automatically when using SMP?

—Ron Oliva, rmoliva@citlink.net

Power off uses an APM call on Linux, but APM is unsafe in SMP mode, so Linux
disables it. There is one command you give to the kernel to enable just enough
APM to allow for power off. With newer kernels, add this to your append= line
in lilo or grub:

apm=power-off

—Marc Merlin, marc_bts@google.com

PowerPC Motherboard?

My brother and I would like to build a PowerPC Linux computer. Do you have
ideas on where we can get a motherboard to build a PPC machine? As far as
PPC Linux distros, we have found Yellow Dog, Mandrake, SuSE, Rock, Holon,
Debian, Vine and Gentoo. So there are a few Linux distros out there for the
PPC.

mailto:idontlikemail@earthlink.net
http://www.geocities.com/epark/linux/grub-w2k-HOWTO.html
mailto:fbarousse@piensa.com
mailto:info@linuxjournal.com
mailto:rmoliva@citlink.net
mailto:marc_bts@google.com

—Rick Killingsworth, iamrlk@yahoo.com

Linux Journal just got a chance to play with a PowerPC ATX motherboard
www.terrasoftsolutions.com/products/boxer. Check our next issue for our first
look.

—Don Marti, info@linuxjournal.com

These links may be of interest to you and your brother; they contain info about
Linux on PPC-based machines and compatible hardware:
lppcfom.sourceforge.net and linuxppc64.org. This link is related to IBM 64-bit
PPC hardware www.openppc.org, and this one talks about the open PPC
architecture and includes some board diagrams/plans.

—Felipe E. Barousse Boué, fbarousse@piensa.com

Management without Monitor and Keyboard

I have been looking for x86-based servers (rackmount) with “lights-out
management” abilities. I currently have several Sun V100 systems with this
capability, but I'm forced to use Solaris. I've been able to get headless systems
set up effectively using port redirection to a serial interface, but that doesn't fix
the problem of an OS crash or a server that is hung and needs a power reset or
to refresh the OS remotely.

—Ron Culler, ron@firelan.net

You need a hardware management card. Many of the major Intel architecture
server vendors, including Dell, HP and IBM offer these cards as options on their
servers. Essentially, these cards are similar to console redirection to the serial
port, except they also allow you to do other things, such as remotely rebooting
or completely turning off the server. Some of these cards even have network
ports to do away with serial-based communications.

—Chad Robinson, crobinson@rfgonline.com

Some motherboards like the Intel 440GX have a second serial port that can be
used for out-of-band management as you mention (hardware monitoring, reset
and power cycle), and of course, you can also get BIOS redirection on the other
port. To control the EMP (emergency management port), you can use VACM on
Linux, vacm.sf.net.

—Marc Merlin, marc_bts@google.com

mailto:iamrlk@yahoo.com
http://www.terrasoftsolutions.com/products/boxer
mailto:info@linuxjournal.com
http://lppcfom.sourceforge.net
http://linuxppc64.org
http://www.openppc.org
mailto:fbarousse@piensa.com
mailto:ron@firelan.net
mailto:crobinson@rfgonline.com
http://vacm.sf.net
mailto:marc_bts@google.com

Middle Digital, Inc. makes ISA and PCI cards that give headless management
functionality to most PC-architecture systems. Telnet to demo.realweasel.com
for a live demo, or search the Linux Journal web site for “weasel”.

—Don Marti info@linuxjournal.com

Which GUI Toolkit?

I am making a program for running lab experiments and examining data, using
arbitrarily long command strings with RPN-style syntax. Command recall and
editing features, such as those provided by readline, are essential, and the
program has to run on a graphics screen. I am leaning toward using svgalib
because that will ease the transition from my DOS version and give greater
efficiency in graph drawing, but I will consider other implementations. Can you
give me some general ideas about how to get my command-line function?

—Bill McConnaughey, mcconnau@biochem.wustl.edu

Depending on which look and language you're most comfortable with, you're
probably going to be best off with a modern GUI toolkit such as GTK+ or Qt.
There is more code you're going to be able to borrow there. Also, it's going to
be easier in the long run, as displays get bigger, if you ever want to be able to
run your program and another program on the same screen at the same time.
For example, Ricardo Fernández Pascual has written interesting-looking
autocompletion functionality for the GtkEntry widget. His project is called
EggEntry and looks general enough to support entering complex commands.
See www.geocrawler.com/mail/msg.php3?msg_id=9808742&list=521.

—Don Marti info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://demo.realweasel.com
mailto:info@linuxjournal.com
mailto:mcconnau@biochem.wustl.edu
http://www.geocrawler.com/mail/msg.php3?msg_id=9808742&list=521
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #107, March 2003

Powerwall 3, CrossOver Office Server Edition, PureMessage 3.0 and more.

Powerwall 3

The AdminForce Powerwall 3 Network Security System (3NSS) performs
security monitoring and intrusion detection for small- to mid-sized businesses.
Powerwall 3NSS provides a remote installation element, remote monitoring,
weekly activity reports and alarm and early warning features. Proxy services are
built in to the Powerwall, including DNS, Web, e-mail, CUSeeMe, RealAudio and
RealVideo. VPN service authorization allows or denies access to any TCP- or
UDP-based application. Powerwall 3 comes in a 19" rackmountable case and
features 128MB of RAM, up to four Ethernet interfaces, Token Ring and FDDI
support, a command-line interface and address masquerading.

Contact AdminForce Remote LLC, 240 Copley Road, Upper Darby, Pennsylvania
19082, 610-734-1900, sales@adminforce.net, www.adminforce.net.

CrossOver Office Server Edition

CodeWeavers released CrossOver Office Server Edition, software that allows
enterprise users to operate MS Windows software in a distributed thin-client
environment for both Linux and Solaris, without the presence of a Microsoft OS
and the accompanying licenses. CrossOver Office supports core office-
automation packages, such as MS Office, Outlook, Internet Explorer and various
other business applications. Server Edition offers licensing based on concurrent
server usage, and unlimited enterprise site licenses also are available.

Contact CodeWeavers, Inc., 2550 University Avenue West, Suite 439S, St. Paul,
Minnesota 55114, sales@codeweavers.com, www.codeweavers.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@adminforce.net
http://www.adminforce.net
mailto:sales@codeweavers.com
http://www.codeweavers.com

PureMessage 3.0

PureMessage (formerly PerlMx) announced version 3.0 of its antispam,
antivirus and policy-compliance product for stopping unsolicited e-mail and
protecting end users' mailboxes. PureMessage is built on open-source
technologies, such as SpamAssassin and WebAdmin, is extensible in Perl and
supports most UNIX platforms. Version 3.0 includes a web-based
administration GUI for policy management, improved spam identification and
management flexibility, optional end-user quarantine management and the
McAfee antivirus engine. PureMessage also uses periodically updated antispam
heuristics for evolving spam methodology.

Contact ActiveState Corporation, #400 - 580 Granville Street, Vancouver, BC V6C
1W6, Canada, 604-484-6400, support@activestate.com, www.activestate.com.

Xilinx Virtex-II Pro ML300 Evaluation Platform

The Virtex-II Pro ML300 Evaluation Platform from Xilinx allows designers to
experiment with features of the Virtex-II Pro FPGA, which contains an
embedded PowerPC processor [see Linux Journal, August 2002]. It is a
development platform for designs using the PowerPC, RocketIO transceivers
and other Virtex-II Pro FPGA features. The product includes GNU tools and
reference designs, the ChipScope Pro 5.1i hardware debug tools, over 40
parameterizable IP cores, an evaluation version of the Xilinx ISE 5.1i FPGA
implementation tools, plus cables. The ML300 is supported under MontaVista
Linux Professional Edition.

Board functions include: four ports of Gigabit Ethernet, two serial ATA
connectors, two HSSDC2 connectors, SystemACE CF Interface with 1GB IBM
MicroDrive, 128MB DDR SDRAM, 6.4" VGA TFT LCD with integrated touchscreen,
IEEE-1394 support, 32/33 PCI Mezzanine Card slot, two CardBus slots, AC97
Audio, IIC EEPROM, temperature sensors, digital potentiometers; SPI EEPROM;
PS2, serial and parallel ports and a 9.6-square-inch prototyping area with 90
free FPGA I/Os.

Contact Xilinx, Inc., 2100 Logic Drive, San Jose, California 95124, 408-559-7778,
www.xilinx.com/ml300.

IBM eServer p630

IBM announced the eServer p630, the company's first pSeries system to run
Linux natively. Designed to lower costs of users deploying Linux on 64-bit
processor technology, the p630 is equipped with POWER4 microprocessors.
The p630 also supports AIX5L, IBM's UNIX OS and a combination of Linux and
AIX5L in logical partitions. The p630 Express Configuration is available with one,

mailto:support@activestate.com
http://www.activestate.com
http://www.xilinx.com/ml300

two or four POWER4 processors and up to 8GB of memory in a rack or tower
configuration. The p630 comes with self-diagnosing and self-healing server
features, including optional hot-plug power supplies and cooling fans, dynamic
deallocation of processors and PCI bus slots and first failure data capture
(FFDC).

Contact IBM Corporation, 1133 Westchester Avenue, White Plains, New York
10604, 888-746-7426, www-1.ibm.com/linux.

Fonix DECtalk RT

DECtalk text-to-speech technology is a formant-based synthesizer that
transforms ordinary text into natural-sounding, intelligible speech. DECtalk
technology offers personalized voices, and its extensive user controls ensure
reliable performance in real-world applications. Fonix DECtalk RT for Linux
provides multilanguage text-to-speech synthesis; nine defined voice
personalities; the ability to say letters, words or phrases; pause, continue and
stop speaking controls; the ability to insert voice control commands into any
text file for use by DECtalk software applications; and much more. Available as
a download, DECtalk works as a runtime component for any application written
to support it.

Contact Fonix, 180 W Election Road, Draper, Utah 84020, 801-553-6600,
www.fonix.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www-1.ibm.com/linux
http://www.fonix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/107/toc107.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	eVote Adds Elections to Mailing Lists
	Marilyn Davis
	The Ballots
	The Clerk's Communication with the Voter
	Shared Memory
	Data Files
	User Interfaces
	The E-mail Interface
	Five Executables
	How eVote/Clerk Integrates with Mailman
	Two Enhancements for Elections

	An Introduction to the Spambayes Project
	Richie Hindle
	Why Spambayes Is Different
	Requirements and Installation
	Keeping up to Date
	Components
	Procmail-Based Setup
	Setting Up the POP3 Proxy and the Web
Interface
	Classifying Your E-mail Using the POP3
Proxy
	Training through the Web Interface
	Training Tips
	Possible Future Directions

	A Statistical Approach to the Spam Problem
	Gary Robinson
	Generating Word Probabilities
	Dealing with Rare Words
	Combining the Probabilities
	The Indicator of Hamminess or Spamminess
	Future Directions
	Conclusion

	Building with Blogs
	Doc Searls
	David Sifry
	Built-for-Blogging Systems
	Discussion Sites
	Content Management Systems
	Wikis

	Getting Started with Emacs
	Charles Curley
	Getting in the Mode
	Major Modes
	Minor Modes
	Your .emacs File
	Emacs as a Server

	Linux Signals for the Application Programmer
	Dr. B. Thangaraju
	Signals inside the Kernel
	Handling Signals
	The Signal System Call
	sigaction
	Sending Signals

	Using the Input Subsystem, Part II
	Brad Hards
	Finding the Version of the Event
Interface
	Finding Information about the Device's
Identity
	Determining the Device Capabilities and
Features
	Retrieving Input from (and to) the
Device
	Force Feedback

	Unicode
	Reuven M. Lerner
	Introduction to Unicode
	Unicode and HTTP
	Unicode and HTML
	Pitfalls
	Conclusion

	Chatting Up the Chef
	Marcel Gagné

	rsync, Part I
	Mick Bauer
	Getting, Compiling and Installing rsync
	Running rsync over SSH
	Setting Up an rsync Server

	Original and Ultimate Communities
	Doc Searls

	“Roadcast Flag” Is MPAA's Latest Attack on Linux
	Seth David Schoen

	BlueCat Networks' Meridius Mail Relay
	Nathan Smith
	Spamazon.com?

	Mathematica 4.2
	Dragan Stancevic
	Acknowledgements

	Letters
	Various
	Letters
	Marry Me, Marry My
LJ
	Two FTP Proxies?
	Acronym Recycling Department
	Is ptrace Secure?
	Another OpenLDAP Win and a Fix
	Where's zNav?
	Installfest at 11,000 Feet
	Zaurus Articles Monthly, Please
	tkcGallery vs. MooView
	Meet Linux Professionals at Borders
	Thanks for the Clues,
LJ
	Thumbs-up on Bluecurve
	Hooray for Zaurus and LJ
Ads
	Why Java without the VM?
	Rackspace vs. Spam Blacklists
	Go on, Take the Microsoft Ad
	Thanks for Not Taking the Microsoft Ad

	Upfront
	Various
	upFRONT
	diff -u: What's New in Kernel
Development
	LJ Index—March
2003
	Sources
	Listening Post: On-line
Fora as Art
	Monster Cluster
	They Said It

	On-line Communities, Hold the Spam
	Don Marti

	E-mail Everywhere from Anywhere
	Heather Mead

	Best of Technical Support
	Various
	SSH Won't Let Me In
	Modem Lights Won't Let Me Log Off
	Dual-Boot Hangs on Install
	SMP System Won't Power Off
	PowerPC Motherboard?
	Management without Monitor and Keyboard
	Which GUI Toolkit?

	New Products
	Heather Mead
	Powerwall 3
	CrossOver Office Server Edition
	PureMessage 3.0
	Xilinx Virtex-II Pro ML300 Evaluation
Platform
	IBM eServer p630
	Fonix DECtalk RT

